Research Article
BibTex RIS Cite

Solutions Formulas for Three-dimensional Difference Equations System with Constant Coefficients

Year 2022, , 107 - 116, 30.06.2022
https://doi.org/10.47000/tjmcs.1060075

Abstract

In this paper, we study the following three-dimensional system of difference equations
\begin{equation*}
x_{n}=\frac{ax_{n-3}z_{n-2}+b}{cy_{n-1}z_{n-2}x_{n-3}}, \ y_{n}=\frac{ay_{n-3}x_{n-2}+b}{cz_{n-1}x_{n-2}y_{n-3}}, \ z_{n}=\frac{az_{n-3}y_{n-2}+b}{cx_{n-1}y_{n-2}z_{n-3}}, \ n\in \mathbb{N}_{0},
\end{equation*}
where the parameters $a, b, c$ and the
initial values $x_{-j},y_{-j},z_{-j}$, $j \in \{1,2,3\}$, are real numbers. We solve aforementioned system in explicit form. Then, we investigate the solutions in 3 different cases depending on whether the parameters are zero or non-zero. In addition, numerical examples are given to demonstrate the theoretical results. Finally, an application is given for solutions are related to Fibonacci numbers when $a=b=c=1$.

References

  • Abo-Zeid, R., Kamal, H., Global behavior of two rational third order difference equations, Univers. J. Math. Appl., 2(4)(2019), 212-217.
  • Abo-Zeid, R., Global behavior and oscillation of a third order difference equation, Quaest. Math., 44(9)(2021), 1261-1280.
  • Ahmad, H., Tollu, D.T., Yalcinkaya, I., Yao, S.W., Global behavior of two rational third order difference equations, Math. Biosci. Eng., 18(5)(2021), 5392-5408.
  • Akrour, Y., Kara, M., Touafek, N., Yazlik, Y., Solutions formulas for some general systems of difference equations, Miskolc Math. Notes., 22(2)(2021), 529-555.
  • Comert, T., Yalcinkaya, I., Tollu, D.T., A study on the positive solutions of an exponential type difference equation, Electron. J. Math. Anal. Appl., 6(1)(2018), 276-286.
  • Dekkar, I., Touafek, N., Yazlik, Y., Global stability of a third-order nonlinear system of difference equations with period-two coefficients, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 111(2017), 325-347.
  • El-Metwally, H., Elsayed, E.M., Qualitative study of solutions of some difference equatiaons, Abstr. Appl. Anal., Article ID 248291, (2012), 16 pages.
  • El-Metwally, H., Elsayed, E.M., Solution and behavior of a third rational difference equation, Util. Math., 88(2012), 27-42.
  • Elsayed, E.M., Ahmed, A.M., Dynamics of a three-dimensional systems of rational difference equations, Math. Methods Appl. Sci., 39(2016), 1026-1038.
  • Elsayed, E.M., Alzahrani, F., Abbas, I., Alotaibi, N.H., Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence, J. Appl. Anal. Comput., 10(1)(2020), 282-296.
  • Elsayed, E.M., Qualitative properties for a fourth order rational difference equation, Acta Appl. Math., 110(2)(2010), 589-604.
  • Elsayed, E.M., Solution for systems of difference equations of rational form of order two, Comput. Appl. Math., 33(3)(2014), 751-765 .
  • Elsayed, E.M., Expression and behavior of the solutions of some rational recursive sequences, Math. Methods Appl. Sci., 18(39)(2016), 5682-5694 .
  • Halim, Y., Touafek, N., Yazlik, Y., Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math., 39(6)(2015), 1004-1018.
  • Halim, Y., Rabago, J.F.T., On the solutions of a second-order difference equation in terms of generalized Padovan sequences, Math. Slovaca., 68(3)(2018), 625-638.
  • Halim, Y., Bayram, M., On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequence, Math. Methods Appl. Sci., 39(2016), 2974-2982 .
  • Ibrahim, T.F., Touafek, N., On a third order rational difference equation with variable coefficients, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms., 20(2)(2013), 251-264.
  • Kara, M., Yazlik, Y., Solvability of a system of nonlinear difference equations of higher order, Turkish J. Math., 43(3)(2019), 1533-1565.
  • Kara, M., Yazlik, Y., Tollu, D.T., Solvability of a system of higher order nonlinear difference equations, Hacet. J. Math. Stat., 49(5)(2020), 1566-1593
  • Kara, M., Yazlik, Y., On the system of difference equations $x_{n}=\frac{x_{n-2}y_{n-3}}{y_{n-1}\left( a_{n}+b_{n}x_{n-2}y_{n-3}\right) }$, $y_{n}=\frac{y_{n-2}x_{n-3}}{x_{n-1}\left( \alpha_{n}+\beta_{n}y_{n-2}x_{n-3}\right) }$, J. Math. Extension., 14(1)(2020), 41-59.
  • Kara, M., Yazlik, Y., On eight solvable systems of difference equations in terms of generalized Padovan sequences, Miskolc Math. Notes., 22(2)(2021), 695-708.
  • Kara, M., Yazlik, Y., Solvability of a nonlinear three-dimensional system of difference equations with constant coefficients, Math. Slovaca., 71(5)(2021), 1133-1148.
  • Papaschinopoulos, G., Schinas, C.J., On the behavior of the solutions of a system of two nonlinear difference equations, Comm. Appl. Nonlinear Anal., 5(2)(1998), 47-59.
  • Stevi\'{c}, S., Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Theory Differ. Equ., 67(2014), 1-15.
  • Taskara, N., Tollu, D.T., Yazlik, Y., Solutions of rational difference system of order three in terms of Padovan numbers, J. Adv. Res. Appl. Math., 7(3)(2015), 18-29.
  • Tollu, D.T., Yazlik, Y., Taskara, N., On the solutions of two special types of Riccati difference equation via Fibonacci numbers, Adv. Difference Equ., 174(2013), 1-7.
  • Tollu, D.T., Yazlik, Y., Taskara, N., On fourteen solvable systems of difference equations, Appl. Math. Comput., 233(2014), 310-319.
  • Tollu, D.T., Yazlik, Y., Taskara, N., On a solvable nonlinear difference equation of higher order, Turkish J. Math., 42(2018), 1765-1778.
  • Tollu, D.T., Yalcinkaya, I., Global behavior of a theree-dimensional system of difference equations of order three, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(1)(2018), 1-16.
  • Touafek, N., Elsayed, E.M., On a second order rational systems of difference equations, Hokkaido Math. J., 44(2015), 29-45.
  • Yalcinkaya, I., Cinar, C., On the solutions of a system of difference equations, Internat. J. Math. Stat., 9(11)(2011), 62-67.
  • Yalcinkaya, I., Tollu, D.T., Global behavior of a second order system of difference equations, Adv. Stud. Contemp. Math., 26(4)(2016), 653-667.
  • Yazlik, Y., Tollu, D.T., Taskara, N., On the solutions of difference equation systems with Padovan numbers, Appl. Math., 4(2013), 15-20.
  • Yazlik, Y., Tollu, D.T., Taskara N., On the solutions of a three-dimensional system of difference equations, Kuwait J. Sci., 43(1)(2016), 95-111.
  • Yazlik, Y., Kara, M., On a solvable system of difference equations of higher-order with period two coefficients, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2)(2019), 1675-1693.
  • Yazlik, Y., Kara, M., On a solvable system of difference equations of fifth-order, Eskisehir Tech. Univ. J. Sci. Tech. B- Theoret. Sci., 7(1)(2019), 29-45.
Year 2022, , 107 - 116, 30.06.2022
https://doi.org/10.47000/tjmcs.1060075

Abstract

References

  • Abo-Zeid, R., Kamal, H., Global behavior of two rational third order difference equations, Univers. J. Math. Appl., 2(4)(2019), 212-217.
  • Abo-Zeid, R., Global behavior and oscillation of a third order difference equation, Quaest. Math., 44(9)(2021), 1261-1280.
  • Ahmad, H., Tollu, D.T., Yalcinkaya, I., Yao, S.W., Global behavior of two rational third order difference equations, Math. Biosci. Eng., 18(5)(2021), 5392-5408.
  • Akrour, Y., Kara, M., Touafek, N., Yazlik, Y., Solutions formulas for some general systems of difference equations, Miskolc Math. Notes., 22(2)(2021), 529-555.
  • Comert, T., Yalcinkaya, I., Tollu, D.T., A study on the positive solutions of an exponential type difference equation, Electron. J. Math. Anal. Appl., 6(1)(2018), 276-286.
  • Dekkar, I., Touafek, N., Yazlik, Y., Global stability of a third-order nonlinear system of difference equations with period-two coefficients, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 111(2017), 325-347.
  • El-Metwally, H., Elsayed, E.M., Qualitative study of solutions of some difference equatiaons, Abstr. Appl. Anal., Article ID 248291, (2012), 16 pages.
  • El-Metwally, H., Elsayed, E.M., Solution and behavior of a third rational difference equation, Util. Math., 88(2012), 27-42.
  • Elsayed, E.M., Ahmed, A.M., Dynamics of a three-dimensional systems of rational difference equations, Math. Methods Appl. Sci., 39(2016), 1026-1038.
  • Elsayed, E.M., Alzahrani, F., Abbas, I., Alotaibi, N.H., Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence, J. Appl. Anal. Comput., 10(1)(2020), 282-296.
  • Elsayed, E.M., Qualitative properties for a fourth order rational difference equation, Acta Appl. Math., 110(2)(2010), 589-604.
  • Elsayed, E.M., Solution for systems of difference equations of rational form of order two, Comput. Appl. Math., 33(3)(2014), 751-765 .
  • Elsayed, E.M., Expression and behavior of the solutions of some rational recursive sequences, Math. Methods Appl. Sci., 18(39)(2016), 5682-5694 .
  • Halim, Y., Touafek, N., Yazlik, Y., Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math., 39(6)(2015), 1004-1018.
  • Halim, Y., Rabago, J.F.T., On the solutions of a second-order difference equation in terms of generalized Padovan sequences, Math. Slovaca., 68(3)(2018), 625-638.
  • Halim, Y., Bayram, M., On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequence, Math. Methods Appl. Sci., 39(2016), 2974-2982 .
  • Ibrahim, T.F., Touafek, N., On a third order rational difference equation with variable coefficients, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms., 20(2)(2013), 251-264.
  • Kara, M., Yazlik, Y., Solvability of a system of nonlinear difference equations of higher order, Turkish J. Math., 43(3)(2019), 1533-1565.
  • Kara, M., Yazlik, Y., Tollu, D.T., Solvability of a system of higher order nonlinear difference equations, Hacet. J. Math. Stat., 49(5)(2020), 1566-1593
  • Kara, M., Yazlik, Y., On the system of difference equations $x_{n}=\frac{x_{n-2}y_{n-3}}{y_{n-1}\left( a_{n}+b_{n}x_{n-2}y_{n-3}\right) }$, $y_{n}=\frac{y_{n-2}x_{n-3}}{x_{n-1}\left( \alpha_{n}+\beta_{n}y_{n-2}x_{n-3}\right) }$, J. Math. Extension., 14(1)(2020), 41-59.
  • Kara, M., Yazlik, Y., On eight solvable systems of difference equations in terms of generalized Padovan sequences, Miskolc Math. Notes., 22(2)(2021), 695-708.
  • Kara, M., Yazlik, Y., Solvability of a nonlinear three-dimensional system of difference equations with constant coefficients, Math. Slovaca., 71(5)(2021), 1133-1148.
  • Papaschinopoulos, G., Schinas, C.J., On the behavior of the solutions of a system of two nonlinear difference equations, Comm. Appl. Nonlinear Anal., 5(2)(1998), 47-59.
  • Stevi\'{c}, S., Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Theory Differ. Equ., 67(2014), 1-15.
  • Taskara, N., Tollu, D.T., Yazlik, Y., Solutions of rational difference system of order three in terms of Padovan numbers, J. Adv. Res. Appl. Math., 7(3)(2015), 18-29.
  • Tollu, D.T., Yazlik, Y., Taskara, N., On the solutions of two special types of Riccati difference equation via Fibonacci numbers, Adv. Difference Equ., 174(2013), 1-7.
  • Tollu, D.T., Yazlik, Y., Taskara, N., On fourteen solvable systems of difference equations, Appl. Math. Comput., 233(2014), 310-319.
  • Tollu, D.T., Yazlik, Y., Taskara, N., On a solvable nonlinear difference equation of higher order, Turkish J. Math., 42(2018), 1765-1778.
  • Tollu, D.T., Yalcinkaya, I., Global behavior of a theree-dimensional system of difference equations of order three, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(1)(2018), 1-16.
  • Touafek, N., Elsayed, E.M., On a second order rational systems of difference equations, Hokkaido Math. J., 44(2015), 29-45.
  • Yalcinkaya, I., Cinar, C., On the solutions of a system of difference equations, Internat. J. Math. Stat., 9(11)(2011), 62-67.
  • Yalcinkaya, I., Tollu, D.T., Global behavior of a second order system of difference equations, Adv. Stud. Contemp. Math., 26(4)(2016), 653-667.
  • Yazlik, Y., Tollu, D.T., Taskara, N., On the solutions of difference equation systems with Padovan numbers, Appl. Math., 4(2013), 15-20.
  • Yazlik, Y., Tollu, D.T., Taskara N., On the solutions of a three-dimensional system of difference equations, Kuwait J. Sci., 43(1)(2016), 95-111.
  • Yazlik, Y., Kara, M., On a solvable system of difference equations of higher-order with period two coefficients, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2)(2019), 1675-1693.
  • Yazlik, Y., Kara, M., On a solvable system of difference equations of fifth-order, Eskisehir Tech. Univ. J. Sci. Tech. B- Theoret. Sci., 7(1)(2019), 29-45.
There are 36 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Merve Kara 0000-0001-8081-0254

Yasin Yazlik 0000-0001-6369-540X

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Kara, M., & Yazlik, Y. (2022). Solutions Formulas for Three-dimensional Difference Equations System with Constant Coefficients. Turkish Journal of Mathematics and Computer Science, 14(1), 107-116. https://doi.org/10.47000/tjmcs.1060075
AMA Kara M, Yazlik Y. Solutions Formulas for Three-dimensional Difference Equations System with Constant Coefficients. TJMCS. June 2022;14(1):107-116. doi:10.47000/tjmcs.1060075
Chicago Kara, Merve, and Yasin Yazlik. “Solutions Formulas for Three-Dimensional Difference Equations System With Constant Coefficients”. Turkish Journal of Mathematics and Computer Science 14, no. 1 (June 2022): 107-16. https://doi.org/10.47000/tjmcs.1060075.
EndNote Kara M, Yazlik Y (June 1, 2022) Solutions Formulas for Three-dimensional Difference Equations System with Constant Coefficients. Turkish Journal of Mathematics and Computer Science 14 1 107–116.
IEEE M. Kara and Y. Yazlik, “Solutions Formulas for Three-dimensional Difference Equations System with Constant Coefficients”, TJMCS, vol. 14, no. 1, pp. 107–116, 2022, doi: 10.47000/tjmcs.1060075.
ISNAD Kara, Merve - Yazlik, Yasin. “Solutions Formulas for Three-Dimensional Difference Equations System With Constant Coefficients”. Turkish Journal of Mathematics and Computer Science 14/1 (June 2022), 107-116. https://doi.org/10.47000/tjmcs.1060075.
JAMA Kara M, Yazlik Y. Solutions Formulas for Three-dimensional Difference Equations System with Constant Coefficients. TJMCS. 2022;14:107–116.
MLA Kara, Merve and Yasin Yazlik. “Solutions Formulas for Three-Dimensional Difference Equations System With Constant Coefficients”. Turkish Journal of Mathematics and Computer Science, vol. 14, no. 1, 2022, pp. 107-16, doi:10.47000/tjmcs.1060075.
Vancouver Kara M, Yazlik Y. Solutions Formulas for Three-dimensional Difference Equations System with Constant Coefficients. TJMCS. 2022;14(1):107-16.

Cited By


SOLVABILITY OF A FOUR DIMENSIONAL SYSTEM OF DIFFERENCE EQUATIONS
Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler
https://doi.org/10.20290/estubtdb.1403701

On solutions of three-dimensional system of difference equations with constant coefficients
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1163955