Research Article
BibTex RIS Cite
Year 2023, , 118 - 124, 30.06.2023
https://doi.org/10.47000/tjmcs.1141025

Abstract

References

  • Chen, B.Y., Ishikawa, S., Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45 (1991), 323–347.
  • Chen, B.Y., On the total curvature of immersed manifolds, VI : Submanifolds of nite type and their applications, Bull. Ins. Math. Acad. Sinica, 11(1983), 309–328.
  • Çakmak, A., Şahin, V., Characterizations of adjoint curves according to alternative moving frame, Fundamental Journal of Mathematics and Applications, 5(1)(2022), 42–50.
  • Ferrandez, A., Lucas, P., Merono, M.A., Biharmonic Hopf cylinders, Rocky Mountain J., 28(1998), 957–975.
  • Inoguchi, J., Biharmonic curves in Minkowski 3-space, International J. Math. Sci., 21(2003), 1365-1368.
  • Inoguchi, J., Biharmonic curves in Minkowski 3-space part II, International J. of Math. and Mathematical Sci., (2006), Article ID 92349, 1–4.
  • Kilic, B., Finite Type Curves and Surfaces, Ph. Thesis, University of Hacettepe, 2002.
  • Kocayiğit, H., Hacısalihoğlu, H.H., 1-type and biharmonic curves in Euclidean 3-space, International Electronic Journal of Geometry , 4(2011), 97–101.
  • Körpınar, T., Turhan, E., Biharmonic curves according to parallel transport frame in $E^{4}$, Bol. Soc. Paran. Mat., 31(2)(2013), 213–217.
  • Külahcı, M., Biharmonic curves in isotropic space $I_{1}^{3}$ , Prespacetime Journal, 7(10)(2016), 1411–1415.
  • Ozturk, G., Bayram, B.K., Arslan, K., Weak biharmonic curve and harmonic 1-type curve in semi-Euclidean space $E_{1}^{4}$, Acta Universitatis Apulensis, 40(2014), 97–101.
  • Perktas¸, S.Y., Kılıç, E., On biharmonic curves in 3-dimensional Heisenberg group, Adıyaman University Journal of Science, 2(2)(2012), 58–74.
  • Uzunoğlu, B., Gök, I., Yaylı, Y., A new approach on curves of constant precession, Appl. Math. Comput. 275(2016), 317–323.

A New Approach on Some Special Curves

Year 2023, , 118 - 124, 30.06.2023
https://doi.org/10.47000/tjmcs.1141025

Abstract

In this paper, we obtain some characterizations for a Frenet curve with the help of an alternative frame different from Frenet frame. Also, in the present study we consider weak biharmonic and harmonic 1-type curves by using the mean curvature vector field of the curve. We also study 1-type and biharmonic curves whose mean curvature vector field is in the kernel of Laplacian. We give some theorems for them in the Euclidean 3-space. Moreover, we give the classifications of these type curves.

References

  • Chen, B.Y., Ishikawa, S., Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45 (1991), 323–347.
  • Chen, B.Y., On the total curvature of immersed manifolds, VI : Submanifolds of nite type and their applications, Bull. Ins. Math. Acad. Sinica, 11(1983), 309–328.
  • Çakmak, A., Şahin, V., Characterizations of adjoint curves according to alternative moving frame, Fundamental Journal of Mathematics and Applications, 5(1)(2022), 42–50.
  • Ferrandez, A., Lucas, P., Merono, M.A., Biharmonic Hopf cylinders, Rocky Mountain J., 28(1998), 957–975.
  • Inoguchi, J., Biharmonic curves in Minkowski 3-space, International J. Math. Sci., 21(2003), 1365-1368.
  • Inoguchi, J., Biharmonic curves in Minkowski 3-space part II, International J. of Math. and Mathematical Sci., (2006), Article ID 92349, 1–4.
  • Kilic, B., Finite Type Curves and Surfaces, Ph. Thesis, University of Hacettepe, 2002.
  • Kocayiğit, H., Hacısalihoğlu, H.H., 1-type and biharmonic curves in Euclidean 3-space, International Electronic Journal of Geometry , 4(2011), 97–101.
  • Körpınar, T., Turhan, E., Biharmonic curves according to parallel transport frame in $E^{4}$, Bol. Soc. Paran. Mat., 31(2)(2013), 213–217.
  • Külahcı, M., Biharmonic curves in isotropic space $I_{1}^{3}$ , Prespacetime Journal, 7(10)(2016), 1411–1415.
  • Ozturk, G., Bayram, B.K., Arslan, K., Weak biharmonic curve and harmonic 1-type curve in semi-Euclidean space $E_{1}^{4}$, Acta Universitatis Apulensis, 40(2014), 97–101.
  • Perktas¸, S.Y., Kılıç, E., On biharmonic curves in 3-dimensional Heisenberg group, Adıyaman University Journal of Science, 2(2)(2012), 58–74.
  • Uzunoğlu, B., Gök, I., Yaylı, Y., A new approach on curves of constant precession, Appl. Math. Comput. 275(2016), 317–323.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Tuba Ağırman Aydın 0000-0001-8034-0723

Hüseyin Kocayiğit 0000-0001-6503-8243

Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Ağırman Aydın, T., & Kocayiğit, H. (2023). A New Approach on Some Special Curves. Turkish Journal of Mathematics and Computer Science, 15(1), 118-124. https://doi.org/10.47000/tjmcs.1141025
AMA Ağırman Aydın T, Kocayiğit H. A New Approach on Some Special Curves. TJMCS. June 2023;15(1):118-124. doi:10.47000/tjmcs.1141025
Chicago Ağırman Aydın, Tuba, and Hüseyin Kocayiğit. “A New Approach on Some Special Curves”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 118-24. https://doi.org/10.47000/tjmcs.1141025.
EndNote Ağırman Aydın T, Kocayiğit H (June 1, 2023) A New Approach on Some Special Curves. Turkish Journal of Mathematics and Computer Science 15 1 118–124.
IEEE T. Ağırman Aydın and H. Kocayiğit, “A New Approach on Some Special Curves”, TJMCS, vol. 15, no. 1, pp. 118–124, 2023, doi: 10.47000/tjmcs.1141025.
ISNAD Ağırman Aydın, Tuba - Kocayiğit, Hüseyin. “A New Approach on Some Special Curves”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 118-124. https://doi.org/10.47000/tjmcs.1141025.
JAMA Ağırman Aydın T, Kocayiğit H. A New Approach on Some Special Curves. TJMCS. 2023;15:118–124.
MLA Ağırman Aydın, Tuba and Hüseyin Kocayiğit. “A New Approach on Some Special Curves”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 118-24, doi:10.47000/tjmcs.1141025.
Vancouver Ağırman Aydın T, Kocayiğit H. A New Approach on Some Special Curves. TJMCS. 2023;15(1):118-24.