Research Article
BibTex RIS Cite

Boundedness Character of the System of Recursive Difference Equations

Year 2024, , 70 - 77, 30.06.2024
https://doi.org/10.47000/tjmcs.1202704

Abstract

In this paper, we take into consideration the boundedness character of positive solutions of the difference system
$x_{n}=\alpha +\prod \limits_{i=1}^{k}y_{n-i}^{a_{i}} $
$y_{n}=\beta +\prod \limits_{i=1}^{k}x_{n-i}^{b_{i}},$
where $a_{i},b_{i}\in \mathbb{R}$, $i=\overline{1,k},$ $a_{k}\neq 0,$ $b_{k}\neq 0$ and $\alpha $ and $\beta $ are nonnegative real numbers.

References

  • Alzahrani, E.O., El-Dessoky, M.M., Elsayed, E.M., Kuang,Y., Solutions and properties of some degenerate systems of difference equations, J. of Comp. Anal. App., 18(2)(2015), 321–333.
  • El-Dessoky, M.M., Elsayed, E.M. On the solutions and periodic nature of some systems of rational difference equations, J. of Comp. Anal. App., 18(2)(2015), 206–218.
  • El-Metwally, H., Yalcinkaya, I., Cinar,.C., Global stability of an economic model, Utilitas Mathematica, 95(2014), 235–244.
  • Elsayed, E.M., The expressions of solutions and periodicity for some nonlinear systems of rational difference equations, Advanced Studies in Cont. Math., 25(3)(2015), 345–371.
  • Elsayed, E.M., On the solutions and periodic nature of some systems of difference equations, International J. of Biomath., 7(6)(2014).
  • Elsayed, E.M., Cinar, C., On the solutions of some systems of difference equations, Utilitas Mathematica, 93(2014), 279–289.
  • Elsayed, E.M., Ibrahim, T.F. Periodicity and solutions for some systems of nonlinear rational difference equations, Hacettepe J. of Math. and Statis., 44(6)(2015,) 1361–1390.
  • Ergin, S., Karatas, R., On the dynamics of a recursive sequence, ARS Combinatoria, 109(2013), 353–360.
  • Gelisken, A., Kara, M.,Some general systems of rational Difference Equations, J. of Dif. Eq., 2015(2015).
  • Gelisken, A., Cinar, C., Yalcinkaya, I., On a max-type difference equation, Advances in Dif. Eq., 2010(2010).
  • Gelisken, A., Cinar,C., Kurbanli, A.S., On the asymptotic behavior and periodic nature of a difference equation with maximum, Comp. & Math. with App., 59(2)(2010), 898–902.
  • Gelisken, A., Cinar, C., On the global attractivity of a max-type difference equation, Disc. Dyn. Nat. Soc., 2009(2009).
  • Halim, Y., Touafek,N., Yazlik, Y., Dynamic behavior of a second-order nonlinear rational difference equation, Turkish Journal of Mathematics, 39(2015), 1004–1018.
  • Hatir, E., Mansour, T., Yalcinkaya, I., On a fuzzy difference equation, Utilitas Mathematica, 93(2014), 135–151.
  • Iricanin, B.,On a higher-order nonlinear diffrence equation, Abstr. Appl. Anal., 2010(2010).
  • Karatas, R., Global behavior of a higher order difference equation, Comp. & Math. with App., 60(3)(2010), 830–839.
  • Karatas, R., Global behavior of a rational recursive sequence, Ars Combinatoria, 97(A)(2010), 421–428.
  • Kurbanli, A.S., Cinar, C., Yalcinkaya, I., On the behavior of positive solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/y_{n}x_{n-1}+1$, $y_{n+1}=y_{n-1}/x_{n}y_{n-1}+1$, Math. and Comp. Model., 53(5-6)(2011), 1261–1267.
  • Papaschinopoulos, G., Radin, M., Schinas, C.J., Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form, Appl. Math. Comput., 218(2012), 5310–5318.
  • Papaschinopoulos, G., Schinas, C.J., Stefanidou, G., On the nonautonomous difference equation $x_{n+1}=A_{n}+(x_{n-1}^{p}/x_{n}^{q}),$ Appl. Math. Comput., 217(2011), 5573–5580.
  • Simsek, D., Demir, B., Cinar, C., On the solutions of the system of difference equations $x_{n+1}=\max\{A/x_{n},y_{n}/x_{n}\}$, $y_{n+1}=\max\{A/y_{n},x_{n}/y_{n}\}$, 2009(2009).
  • Simsek, D., Cinar, C., Yalcinkaya, I., On the recursive sequence $x(n+1)=x(n-(5k+9))/(1+x(n-4)x(n-9)...x(n-(5k+4)))$, Taiwanese J. of Math., 12(5)(2008), 1087–1099.
  • Stefanidou, G., Papaschinopoulos, G., Schinas, C.J., On a system of two exponential type difference equations, Commun. Appl. Nonlinear Anal., 17(2)(2010), 1-13.
  • Stevic,S., Alghamdi, M.A., Alotaibi, A., Boundedness character of the recursive sequence $x_{n}=\alpha +\prod\limits_{j=1}^{k}x_{n-j}^{a_{j}}$, Applied Mathematics Letters, 50(2015), 83–90.
  • Stevic, S., On the recursive sequence $x_{n+1}=\alpha+(x_{n-1}^{p}/x_{n}^{p})$, J. Appl. Math. Comput., 18 (1-2)(2005), 229–234.
  • Stevic, S., On the recursive sequence $x_{n+1}=A+(x_{n}^{p}/x_{n-1}^{r})$, Discrete Dyn. Nat. Soc., 2007(2007).
  • Stevic, S., On a class of higher-order difference equations,Chaos Solutions Fractals, 42(2009), 138–145.
  • Tollu, D.T., Yazlik, Y., Taskara, N., On fourteen solvable systems of difference equations, Appl. Math. Comput., 233(2014), 310–319.
  • Touafek, N., Elsayed, E.M., On a second order rational systems of difference equations, Hokkaido Mathematical Journal, 44(1)(2015), 29–45.
  • Yalcinkaya, I., On the global asymptotic behavior of a system of two nonlinear difference equations, ARS Combinatoria, 95(2010), 151–159.
  • Yazlik, Y., Tollu, D.T., Taskara, N., On the solutions of a max-type difference equation system, Mathematical Methods in the Applied Sciences, 38(17)(2015), 4388–4410.
  • Yazlik, Y., Tollu, D.T. Taskara, N., On the behaviour of solutions for some systems of difference equations, J. of Comp. Anal. App., 18(1)(2015), 166–178.
  • Yazlik, Y., Elsayed, E.M., Taskara, N., On the behaviour of the solutions of difference equation systems, J. of Comp. Anal. App., 16(5)(2014), 932–941.
Year 2024, , 70 - 77, 30.06.2024
https://doi.org/10.47000/tjmcs.1202704

Abstract

References

  • Alzahrani, E.O., El-Dessoky, M.M., Elsayed, E.M., Kuang,Y., Solutions and properties of some degenerate systems of difference equations, J. of Comp. Anal. App., 18(2)(2015), 321–333.
  • El-Dessoky, M.M., Elsayed, E.M. On the solutions and periodic nature of some systems of rational difference equations, J. of Comp. Anal. App., 18(2)(2015), 206–218.
  • El-Metwally, H., Yalcinkaya, I., Cinar,.C., Global stability of an economic model, Utilitas Mathematica, 95(2014), 235–244.
  • Elsayed, E.M., The expressions of solutions and periodicity for some nonlinear systems of rational difference equations, Advanced Studies in Cont. Math., 25(3)(2015), 345–371.
  • Elsayed, E.M., On the solutions and periodic nature of some systems of difference equations, International J. of Biomath., 7(6)(2014).
  • Elsayed, E.M., Cinar, C., On the solutions of some systems of difference equations, Utilitas Mathematica, 93(2014), 279–289.
  • Elsayed, E.M., Ibrahim, T.F. Periodicity and solutions for some systems of nonlinear rational difference equations, Hacettepe J. of Math. and Statis., 44(6)(2015,) 1361–1390.
  • Ergin, S., Karatas, R., On the dynamics of a recursive sequence, ARS Combinatoria, 109(2013), 353–360.
  • Gelisken, A., Kara, M.,Some general systems of rational Difference Equations, J. of Dif. Eq., 2015(2015).
  • Gelisken, A., Cinar, C., Yalcinkaya, I., On a max-type difference equation, Advances in Dif. Eq., 2010(2010).
  • Gelisken, A., Cinar,C., Kurbanli, A.S., On the asymptotic behavior and periodic nature of a difference equation with maximum, Comp. & Math. with App., 59(2)(2010), 898–902.
  • Gelisken, A., Cinar, C., On the global attractivity of a max-type difference equation, Disc. Dyn. Nat. Soc., 2009(2009).
  • Halim, Y., Touafek,N., Yazlik, Y., Dynamic behavior of a second-order nonlinear rational difference equation, Turkish Journal of Mathematics, 39(2015), 1004–1018.
  • Hatir, E., Mansour, T., Yalcinkaya, I., On a fuzzy difference equation, Utilitas Mathematica, 93(2014), 135–151.
  • Iricanin, B.,On a higher-order nonlinear diffrence equation, Abstr. Appl. Anal., 2010(2010).
  • Karatas, R., Global behavior of a higher order difference equation, Comp. & Math. with App., 60(3)(2010), 830–839.
  • Karatas, R., Global behavior of a rational recursive sequence, Ars Combinatoria, 97(A)(2010), 421–428.
  • Kurbanli, A.S., Cinar, C., Yalcinkaya, I., On the behavior of positive solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/y_{n}x_{n-1}+1$, $y_{n+1}=y_{n-1}/x_{n}y_{n-1}+1$, Math. and Comp. Model., 53(5-6)(2011), 1261–1267.
  • Papaschinopoulos, G., Radin, M., Schinas, C.J., Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form, Appl. Math. Comput., 218(2012), 5310–5318.
  • Papaschinopoulos, G., Schinas, C.J., Stefanidou, G., On the nonautonomous difference equation $x_{n+1}=A_{n}+(x_{n-1}^{p}/x_{n}^{q}),$ Appl. Math. Comput., 217(2011), 5573–5580.
  • Simsek, D., Demir, B., Cinar, C., On the solutions of the system of difference equations $x_{n+1}=\max\{A/x_{n},y_{n}/x_{n}\}$, $y_{n+1}=\max\{A/y_{n},x_{n}/y_{n}\}$, 2009(2009).
  • Simsek, D., Cinar, C., Yalcinkaya, I., On the recursive sequence $x(n+1)=x(n-(5k+9))/(1+x(n-4)x(n-9)...x(n-(5k+4)))$, Taiwanese J. of Math., 12(5)(2008), 1087–1099.
  • Stefanidou, G., Papaschinopoulos, G., Schinas, C.J., On a system of two exponential type difference equations, Commun. Appl. Nonlinear Anal., 17(2)(2010), 1-13.
  • Stevic,S., Alghamdi, M.A., Alotaibi, A., Boundedness character of the recursive sequence $x_{n}=\alpha +\prod\limits_{j=1}^{k}x_{n-j}^{a_{j}}$, Applied Mathematics Letters, 50(2015), 83–90.
  • Stevic, S., On the recursive sequence $x_{n+1}=\alpha+(x_{n-1}^{p}/x_{n}^{p})$, J. Appl. Math. Comput., 18 (1-2)(2005), 229–234.
  • Stevic, S., On the recursive sequence $x_{n+1}=A+(x_{n}^{p}/x_{n-1}^{r})$, Discrete Dyn. Nat. Soc., 2007(2007).
  • Stevic, S., On a class of higher-order difference equations,Chaos Solutions Fractals, 42(2009), 138–145.
  • Tollu, D.T., Yazlik, Y., Taskara, N., On fourteen solvable systems of difference equations, Appl. Math. Comput., 233(2014), 310–319.
  • Touafek, N., Elsayed, E.M., On a second order rational systems of difference equations, Hokkaido Mathematical Journal, 44(1)(2015), 29–45.
  • Yalcinkaya, I., On the global asymptotic behavior of a system of two nonlinear difference equations, ARS Combinatoria, 95(2010), 151–159.
  • Yazlik, Y., Tollu, D.T., Taskara, N., On the solutions of a max-type difference equation system, Mathematical Methods in the Applied Sciences, 38(17)(2015), 4388–4410.
  • Yazlik, Y., Tollu, D.T. Taskara, N., On the behaviour of solutions for some systems of difference equations, J. of Comp. Anal. App., 18(1)(2015), 166–178.
  • Yazlik, Y., Elsayed, E.M., Taskara, N., On the behaviour of the solutions of difference equation systems, J. of Comp. Anal. App., 16(5)(2014), 932–941.
There are 33 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nimet Coskun 0000-0001-9753-0101

Ali Gelişken 0000-0003-0814-8678

Nihal Yokuş 0000-0002-5327-2312

Publication Date June 30, 2024
Published in Issue Year 2024

Cite

APA Coskun, N., Gelişken, A., & Yokuş, N. (2024). Boundedness Character of the System of Recursive Difference Equations. Turkish Journal of Mathematics and Computer Science, 16(1), 70-77. https://doi.org/10.47000/tjmcs.1202704
AMA Coskun N, Gelişken A, Yokuş N. Boundedness Character of the System of Recursive Difference Equations. TJMCS. June 2024;16(1):70-77. doi:10.47000/tjmcs.1202704
Chicago Coskun, Nimet, Ali Gelişken, and Nihal Yokuş. “Boundedness Character of the System of Recursive Difference Equations”. Turkish Journal of Mathematics and Computer Science 16, no. 1 (June 2024): 70-77. https://doi.org/10.47000/tjmcs.1202704.
EndNote Coskun N, Gelişken A, Yokuş N (June 1, 2024) Boundedness Character of the System of Recursive Difference Equations. Turkish Journal of Mathematics and Computer Science 16 1 70–77.
IEEE N. Coskun, A. Gelişken, and N. Yokuş, “Boundedness Character of the System of Recursive Difference Equations”, TJMCS, vol. 16, no. 1, pp. 70–77, 2024, doi: 10.47000/tjmcs.1202704.
ISNAD Coskun, Nimet et al. “Boundedness Character of the System of Recursive Difference Equations”. Turkish Journal of Mathematics and Computer Science 16/1 (June 2024), 70-77. https://doi.org/10.47000/tjmcs.1202704.
JAMA Coskun N, Gelişken A, Yokuş N. Boundedness Character of the System of Recursive Difference Equations. TJMCS. 2024;16:70–77.
MLA Coskun, Nimet et al. “Boundedness Character of the System of Recursive Difference Equations”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 1, 2024, pp. 70-77, doi:10.47000/tjmcs.1202704.
Vancouver Coskun N, Gelişken A, Yokuş N. Boundedness Character of the System of Recursive Difference Equations. TJMCS. 2024;16(1):70-7.