Research Article
BibTex RIS Cite

Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces

Year 2024, Volume: 16 Issue: 1, 21 - 27, 30.06.2024
https://doi.org/10.47000/tjmcs.1261727
https://izlik.org/JA37YM39LZ

Abstract

In this paper, we establish that the sequence of the new iteration converges to an endpoints of multivalued generalized α-nonexpansive mappings in 2-uniformly convex hyperbolic space. We present some strong and Δ-convergence theorems for such operator in a hyperbolic metric space. The results presented in this paper extend and improve some recent results in the literature.

References

  • Abdeljawad, T., Ullah, K., Ahmad, J., Mlaiki, N., Iterative approximation of endpoints for multivalued mappings in Banach spaces, Hindawi Journal of Function Spaces, 2020(2020), Article ID 2179059.
  • Abkar, A., Eslamian, M., A fixed point theorem for generalized nonexpansive multivalued mappings, Fixed Point Theory, 12(2)(2011), 241–246.
  • Chuadchawna, P., Farajzadeh, A., Kaewchareon, A., Convergence theorems and approximating endpoints for multivalued Suzuki mappings in hyperbolic spaces, Journal of Computational Analysis and Applications, 28(2020), 903–916.
  • Dhompongsa, S., Panyanak, B., On Δ-convergence theorems in CAT(0) space, Comput. Math. Appl., 56(2008), 2572–2579.
  • Iqbal, H., Abbas, M., Husnine, S.M., Existence and approximation of fixed points of multivalued generalized α-nonexpansive mappings in Banach spaces, Numerical Algorithms, 85(2020), 1029–1049.
  • Kaplan, M., Iterative approximation of endpoints for Suzuki Generalized multivalued mappings in Hadamard spaces, JP Journal of Fixed Point Theory and Applications, 15(3)(2020), 125–139.
  • Kohlenbach, U., Some logical metatheorems with applications in functional analysis, Transactions of the American Mathematical Society, 357(1)(2005), 89–128.
  • Kudtha, A., Panyanak, B., Common endpoints for Suzuki mappings in uniformly convex hyperbolic spaces, Thai J. Math , (special issue), (2018), 159–168.
  • Laokul, T., Panyanak, B., A generalizzation of the (CN) inequality and its applications, Carpathian Journal of Mathematics, 36(1)(2020), 81–90.
  • Leustean, L., A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl., 325(2007), 386–399.
  • Nanjaras, B., Panyanak, B., Phuengrattana,W., Fixed point theorems and convergence theorems for suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal. Hybrid Syst., 4(1)(2010), 25–31.
  • Pant, R., Shukla, R., Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numerical Functional Analysis and Optimization, 38(2)(2017), 248–266.
  • Panyanak, B., Endpoints of multivalued nonexpansive mappings in geodesic spaces, Fixed Point Theory Appl., 147(2015), 1–11.
  • Panyanak, B., Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., 20(2018), 1–8.
  • Panyanak, B., Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl., 54(6)(2007), 872–877.
  • Sadhu, R., Majee, P., Nahak, C., Fixed point theorems on generalized α-nonexpansive multivalued mappings, The Journal of Analysis, 29(2021), 1165–1190.
  • Sastry, K.P.R., Babu, G.V.R., Convergence of Ishikawa iterates for a multivalued mapping with a fixed point, Czechoslovak Math. J., 55(2005), 817–826.
  • Saejung, S., Remarks on endpoints of multivalued mappings on geodesic spaces, Fixed Point Theory Appl., 52(2016), 1–12.
  • Shahzad, N., Zegeye, H., On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Analysis, 71(2009), 838–844.
  • Song, Y., Wang, H., Erratum to ‘Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl., 55(12)(2008), 2999–3002.
  • Suzuki, T., Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2008), 1088–1095.
  • Uddin, I., Agarwal, S., Abdou, A.A., Approximation of endpoints for α−Reich–Suzuki nonexpansive mappings in hyperbolic metric spaces, Mathematics, 9(14)(2021), 1692.
  • Ullah, K., Ahmad, J., Mlaiki, N., On Noor iterative process for multi-valued nonexpansive mappings with application, International Journal of Mathematical Analysis, 13(6)(2019), 293–307.
  • Ullah, K., Khan, M.S.U., Muhammad, N., Ahmad, J., Approximation of endpoints for multivalued nonexpansive mappings in geodesic spaces, Asian-European Journal of Mathematics, (2019) article 2050141.
  • Ullah, K., Ahmad, J., Muhammad, N., Approximation of endpoints for multivalued mappings in metric spaces, Journal of Linear and Topological Algebra, 9(2)(2020), 129–137.

Year 2024, Volume: 16 Issue: 1, 21 - 27, 30.06.2024
https://doi.org/10.47000/tjmcs.1261727
https://izlik.org/JA37YM39LZ

Abstract

References

  • Abdeljawad, T., Ullah, K., Ahmad, J., Mlaiki, N., Iterative approximation of endpoints for multivalued mappings in Banach spaces, Hindawi Journal of Function Spaces, 2020(2020), Article ID 2179059.
  • Abkar, A., Eslamian, M., A fixed point theorem for generalized nonexpansive multivalued mappings, Fixed Point Theory, 12(2)(2011), 241–246.
  • Chuadchawna, P., Farajzadeh, A., Kaewchareon, A., Convergence theorems and approximating endpoints for multivalued Suzuki mappings in hyperbolic spaces, Journal of Computational Analysis and Applications, 28(2020), 903–916.
  • Dhompongsa, S., Panyanak, B., On Δ-convergence theorems in CAT(0) space, Comput. Math. Appl., 56(2008), 2572–2579.
  • Iqbal, H., Abbas, M., Husnine, S.M., Existence and approximation of fixed points of multivalued generalized α-nonexpansive mappings in Banach spaces, Numerical Algorithms, 85(2020), 1029–1049.
  • Kaplan, M., Iterative approximation of endpoints for Suzuki Generalized multivalued mappings in Hadamard spaces, JP Journal of Fixed Point Theory and Applications, 15(3)(2020), 125–139.
  • Kohlenbach, U., Some logical metatheorems with applications in functional analysis, Transactions of the American Mathematical Society, 357(1)(2005), 89–128.
  • Kudtha, A., Panyanak, B., Common endpoints for Suzuki mappings in uniformly convex hyperbolic spaces, Thai J. Math , (special issue), (2018), 159–168.
  • Laokul, T., Panyanak, B., A generalizzation of the (CN) inequality and its applications, Carpathian Journal of Mathematics, 36(1)(2020), 81–90.
  • Leustean, L., A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl., 325(2007), 386–399.
  • Nanjaras, B., Panyanak, B., Phuengrattana,W., Fixed point theorems and convergence theorems for suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal. Hybrid Syst., 4(1)(2010), 25–31.
  • Pant, R., Shukla, R., Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numerical Functional Analysis and Optimization, 38(2)(2017), 248–266.
  • Panyanak, B., Endpoints of multivalued nonexpansive mappings in geodesic spaces, Fixed Point Theory Appl., 147(2015), 1–11.
  • Panyanak, B., Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., 20(2018), 1–8.
  • Panyanak, B., Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl., 54(6)(2007), 872–877.
  • Sadhu, R., Majee, P., Nahak, C., Fixed point theorems on generalized α-nonexpansive multivalued mappings, The Journal of Analysis, 29(2021), 1165–1190.
  • Sastry, K.P.R., Babu, G.V.R., Convergence of Ishikawa iterates for a multivalued mapping with a fixed point, Czechoslovak Math. J., 55(2005), 817–826.
  • Saejung, S., Remarks on endpoints of multivalued mappings on geodesic spaces, Fixed Point Theory Appl., 52(2016), 1–12.
  • Shahzad, N., Zegeye, H., On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Analysis, 71(2009), 838–844.
  • Song, Y., Wang, H., Erratum to ‘Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl., 55(12)(2008), 2999–3002.
  • Suzuki, T., Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2008), 1088–1095.
  • Uddin, I., Agarwal, S., Abdou, A.A., Approximation of endpoints for α−Reich–Suzuki nonexpansive mappings in hyperbolic metric spaces, Mathematics, 9(14)(2021), 1692.
  • Ullah, K., Ahmad, J., Mlaiki, N., On Noor iterative process for multi-valued nonexpansive mappings with application, International Journal of Mathematical Analysis, 13(6)(2019), 293–307.
  • Ullah, K., Khan, M.S.U., Muhammad, N., Ahmad, J., Approximation of endpoints for multivalued nonexpansive mappings in geodesic spaces, Asian-European Journal of Mathematics, (2019) article 2050141.
  • Ullah, K., Ahmad, J., Muhammad, N., Approximation of endpoints for multivalued mappings in metric spaces, Journal of Linear and Topological Algebra, 9(2)(2020), 129–137.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Makbule Kaplan Özekes 0000-0002-7962-702X

Publication Date June 30, 2024
DOI https://doi.org/10.47000/tjmcs.1261727
IZ https://izlik.org/JA37YM39LZ
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Kaplan Özekes, M. (2024). Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces. Turkish Journal of Mathematics and Computer Science, 16(1), 21-27. https://doi.org/10.47000/tjmcs.1261727
AMA 1.Kaplan Özekes M. Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces. TJMCS. 2024;16(1):21-27. doi:10.47000/tjmcs.1261727
Chicago Kaplan Özekes, Makbule. 2024. “Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces”. Turkish Journal of Mathematics and Computer Science 16 (1): 21-27. https://doi.org/10.47000/tjmcs.1261727.
EndNote Kaplan Özekes M (June 1, 2024) Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces. Turkish Journal of Mathematics and Computer Science 16 1 21–27.
IEEE [1]M. Kaplan Özekes, “Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces”, TJMCS, vol. 16, no. 1, pp. 21–27, June 2024, doi: 10.47000/tjmcs.1261727.
ISNAD Kaplan Özekes, Makbule. “Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces”. Turkish Journal of Mathematics and Computer Science 16/1 (June 1, 2024): 21-27. https://doi.org/10.47000/tjmcs.1261727.
JAMA 1.Kaplan Özekes M. Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces. TJMCS. 2024;16:21–27.
MLA Kaplan Özekes, Makbule. “Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 1, June 2024, pp. 21-27, doi:10.47000/tjmcs.1261727.
Vancouver 1.Kaplan Özekes M. Aprroximation of Endpoints for Generalized $\alpha $-Nonexpansive Multivalued Mappings in Hyperbolic Spaces. TJMCS [Internet]. 2024 June 1;16(1):21-7. Available from: https://izlik.org/JA37YM39LZ