This paper is concerned with a finite-dimensional example of a linear pencil which leads to a class of non-self-adjoint matrices. We consider the linear pencil $H_c-\lambda L$, where $H_c$ is a tri-diagonal matrix with a constant parameter $c$ on the main diagonal and off-diagonal entries equal to one, and $L$ is a diagonal matrix whose elements decrease linearly from one to minus one. In general, the spectra of operator polynomials may contain non-real eigenvalues as well as real eigenvalues. Nevertheless, they exhibit certain patterns. Our aim in this research is to carry out a variety of numerical investigation on the eigenvalues so as to understand the eigenvalue behaviour of such pencils from different points of view. In accordance with our numerical findings, a series of conjectures are offered and various heuristics has been discussed.
Bagarello, F., Gazeau, J.P., Szafraniec, F.H., Znojil, M., Non-selfadjoint Operators in Quantum Physics, John Wiley & Sons, Inc., Hoboken, NJ, 2015.
Bai, Z., Day, D., Demmel, J., Dongarra, J., A test matrix collection for non-Hermitian eigenvalue problems, Technical Report CS-97-355, (1996).
Bora, S., Mehrmann, V., Linear perturbation theory for structured matrix pencils arising in control theory, SIAM J. Matrix Anal. Appl. 28(2006), 148–169.
Cullum, J., Kerner, W., Willoughby, R., A generalized nonsymmetric Lanczos procedure, Comput. Phys. Commun., 53(1989), 19–48.
Davies, E.B., Levitin, M., Spectra of a class of non-self-adjoint matrices, Linear Algebra Appl., 448(2014), 55–84.
Elton, D.M., Levitin, M., Polterovich, I., Eigenvalues of a one-dimensional Dirac operator pencil, Ann. Henri Poincar´e, 15(2014), 2321–2377.
Jeribi, A., Moalla, N., Yengui, S., S -essential spectra and application to an example of transport operators, Math. Methods Appl. Sci., 37(2014), 2341–2353.
Levitin, M., Öztürk, H.M., A two-parameter eigenvalue problem for a class of block-operator matrices, Oper. Theory Adv. Appl., 268(2018), 367–380.
Levitin, M., Seri, M., Accumulation of complex eigenvalues of an indefinite Sturm-Liouville operator with a shifted Coulomb potential, Oper. Matrices, 10(2016), 223–245.
Öztürk, H.M., On a conjecture of Davies and Levitin, Math. Methods Appl. Sci., 46(2023), 4391–4412.
Markus, A.S., Introduction to the Spectral Theory of Polynomial Operator Pencils. Transl. from the Russian by H.H. McFaden, American Mathematical Society, 1988.
Möller, M., Pivovarchik, V., Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkh¨auser/Springer, Cham, 2015.
Tisseur, F., Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43(2001), 235–286.
Tretter, C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
Bagarello, F., Gazeau, J.P., Szafraniec, F.H., Znojil, M., Non-selfadjoint Operators in Quantum Physics, John Wiley & Sons, Inc., Hoboken, NJ, 2015.
Bai, Z., Day, D., Demmel, J., Dongarra, J., A test matrix collection for non-Hermitian eigenvalue problems, Technical Report CS-97-355, (1996).
Bora, S., Mehrmann, V., Linear perturbation theory for structured matrix pencils arising in control theory, SIAM J. Matrix Anal. Appl. 28(2006), 148–169.
Cullum, J., Kerner, W., Willoughby, R., A generalized nonsymmetric Lanczos procedure, Comput. Phys. Commun., 53(1989), 19–48.
Davies, E.B., Levitin, M., Spectra of a class of non-self-adjoint matrices, Linear Algebra Appl., 448(2014), 55–84.
Elton, D.M., Levitin, M., Polterovich, I., Eigenvalues of a one-dimensional Dirac operator pencil, Ann. Henri Poincar´e, 15(2014), 2321–2377.
Jeribi, A., Moalla, N., Yengui, S., S -essential spectra and application to an example of transport operators, Math. Methods Appl. Sci., 37(2014), 2341–2353.
Levitin, M., Öztürk, H.M., A two-parameter eigenvalue problem for a class of block-operator matrices, Oper. Theory Adv. Appl., 268(2018), 367–380.
Levitin, M., Seri, M., Accumulation of complex eigenvalues of an indefinite Sturm-Liouville operator with a shifted Coulomb potential, Oper. Matrices, 10(2016), 223–245.
Öztürk, H.M., On a conjecture of Davies and Levitin, Math. Methods Appl. Sci., 46(2023), 4391–4412.
Markus, A.S., Introduction to the Spectral Theory of Polynomial Operator Pencils. Transl. from the Russian by H.H. McFaden, American Mathematical Society, 1988.
Möller, M., Pivovarchik, V., Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkh¨auser/Springer, Cham, 2015.
Tisseur, F., Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43(2001), 235–286.
Tretter, C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
There are 14 citations in total.
Details
Primary Language
English
Subjects
Experimental Mathematics, Numerical and Computational Mathematics (Other), Operator Algebras and Functional Analysis
Öztürk, H. M. (2024). Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. Turkish Journal of Mathematics and Computer Science, 16(2), 518-528. https://doi.org/10.47000/tjmcs.1349180
AMA
Öztürk HM. Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. TJMCS. December 2024;16(2):518-528. doi:10.47000/tjmcs.1349180
Chicago
Öztürk, Hasen Mekki. “Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 518-28. https://doi.org/10.47000/tjmcs.1349180.
EndNote
Öztürk HM (December 1, 2024) Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. Turkish Journal of Mathematics and Computer Science 16 2 518–528.
IEEE
H. M. Öztürk, “Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study”, TJMCS, vol. 16, no. 2, pp. 518–528, 2024, doi: 10.47000/tjmcs.1349180.
ISNAD
Öztürk, Hasen Mekki. “Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 518-528. https://doi.org/10.47000/tjmcs.1349180.
JAMA
Öztürk HM. Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. TJMCS. 2024;16:518–528.
MLA
Öztürk, Hasen Mekki. “Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 518-2, doi:10.47000/tjmcs.1349180.
Vancouver
Öztürk HM. Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. TJMCS. 2024;16(2):518-2.