Araştırma Makalesi
BibTex RIS Kaynak Göster

Integral Circulant Graphs and So’s Conjecture

Yıl 2024, , 169 - 176, 30.06.2024
https://doi.org/10.47000/tjmcs.1461910

Öz

An integral circulant graph is a circulant graph whose adjacency matrix has only integer eigenvalues. It was conjectured by W. So that there are exactly $2^{\tau(n) - 1}$ non-isospectral integral circulant graphs of order $n$, where $\tau ( n )$ is the number of divisors of $n$. However, the conjecture remains unproven. In this paper, we present the fundamental concepts and results on the conjecture. We obtain the relation between two characterizations of integral circulant graphs given by W. So and by W. Klotz and T. Sander . Finally,we calculate the eigenvalues of the integral circulant graph $G$ if $S(G) = G_{n}(d)$ for any $d \in D $. Here $G_{n}(d)$ is the set of all integers less than $n$ that have the same greatest common divisor $d$ with $n$.

Kaynakça

  • Biggs, N., Algebraic Graph Theory, Cambridge University Press, London, 1993.
  • Klotz, W., Sander, T., Some properties of unitary Cayley graphs, The Electronic Journal of Combinatorics, (2007).
  • Mönius, K., So, W., How many non-isospectral integral circulant graphs are there?, Australasian Journal of Combinatorics, 86(2023), 320– 335.
  • Sander, J.W., Sander T., On So’s conjecture for integral circulant graphs, Applicable Analysis and Discrete Mathematics, (2015), 59–72.
  • So, W., Integral circulant graphs, Discrete Mathematics, 306(2006), 153–158.
Yıl 2024, , 169 - 176, 30.06.2024
https://doi.org/10.47000/tjmcs.1461910

Öz

Kaynakça

  • Biggs, N., Algebraic Graph Theory, Cambridge University Press, London, 1993.
  • Klotz, W., Sander, T., Some properties of unitary Cayley graphs, The Electronic Journal of Combinatorics, (2007).
  • Mönius, K., So, W., How many non-isospectral integral circulant graphs are there?, Australasian Journal of Combinatorics, 86(2023), 320– 335.
  • Sander, J.W., Sander T., On So’s conjecture for integral circulant graphs, Applicable Analysis and Discrete Mathematics, (2015), 59–72.
  • So, W., Integral circulant graphs, Discrete Mathematics, 306(2006), 153–158.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kombinatorik ve Ayrık Matematik (Fiziksel Kombinatorik Hariç)
Bölüm Makaleler
Yazarlar

Ercan Altınışık 0000-0002-0476-9429

Sümeyye Büşra Aydın 0000-0003-3604-2862

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 30 Mart 2024
Kabul Tarihi 22 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Altınışık, E., & Aydın, S. B. (2024). Integral Circulant Graphs and So’s Conjecture. Turkish Journal of Mathematics and Computer Science, 16(1), 169-176. https://doi.org/10.47000/tjmcs.1461910
AMA Altınışık E, Aydın SB. Integral Circulant Graphs and So’s Conjecture. TJMCS. Haziran 2024;16(1):169-176. doi:10.47000/tjmcs.1461910
Chicago Altınışık, Ercan, ve Sümeyye Büşra Aydın. “Integral Circulant Graphs and So’s Conjecture”. Turkish Journal of Mathematics and Computer Science 16, sy. 1 (Haziran 2024): 169-76. https://doi.org/10.47000/tjmcs.1461910.
EndNote Altınışık E, Aydın SB (01 Haziran 2024) Integral Circulant Graphs and So’s Conjecture. Turkish Journal of Mathematics and Computer Science 16 1 169–176.
IEEE E. Altınışık ve S. B. Aydın, “Integral Circulant Graphs and So’s Conjecture”, TJMCS, c. 16, sy. 1, ss. 169–176, 2024, doi: 10.47000/tjmcs.1461910.
ISNAD Altınışık, Ercan - Aydın, Sümeyye Büşra. “Integral Circulant Graphs and So’s Conjecture”. Turkish Journal of Mathematics and Computer Science 16/1 (Haziran 2024), 169-176. https://doi.org/10.47000/tjmcs.1461910.
JAMA Altınışık E, Aydın SB. Integral Circulant Graphs and So’s Conjecture. TJMCS. 2024;16:169–176.
MLA Altınışık, Ercan ve Sümeyye Büşra Aydın. “Integral Circulant Graphs and So’s Conjecture”. Turkish Journal of Mathematics and Computer Science, c. 16, sy. 1, 2024, ss. 169-76, doi:10.47000/tjmcs.1461910.
Vancouver Altınışık E, Aydın SB. Integral Circulant Graphs and So’s Conjecture. TJMCS. 2024;16(1):169-76.