Research Article
BibTex RIS Cite

Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators

Year 2025, Volume: 17 Issue: 2, 534 - 543, 30.12.2025
https://doi.org/10.47000/tjmcs.1545292

Abstract

Unified Mittag-Leffler function defined by using beta function that consist of two Fox-Wright function in its kernel is introduced and its relation to Fox-Wright, Fox-$H$ functions and Mellin-Barnes type integral are illustrate. The beta, SUM, Laplace, Whittaker, $K$- and $P_{\partial}$- integral transforms are applied to the function and generalized formulas are obtained in form of both unified Mittag-Leffler and Fox-Wright functions. The convergence and differential formulas of this unified Mittag-Leffler function is also demonstrated.

References

  • Agarwal, P., Suthar, D.L., Jain, S., Momani, S., The extended multi-index Mittag-Leffler functions and their properties connected with fractional calculus and integral transforms, Thai Journ. Math., 20(2022), 1251–1266.
  • Anderic, M., Farid, G., Pecaric, J., A further extension of Mittag-Leffler function, Journ. Fract. Calc. Appl., 2(2018), 1377–1395.
  • Bhatnagar, D., Pandey, R.M., A study of some integral transforms on Q function, South East Asian Journ. Math. Sci., 16(2020), 99–110.
  • Bin-Saad, M.G. Al-Hashami, A., Younis, J.A., Some fractional calculus properties of bivariate Mittag-Leffler function, Journ. Fract. Calc. Appl., 14(2023), 214–227.
  • Chen, D., Anwar, M., Farid, G., Yasmeen, H., Further generalizations of some fractional integral inequalities, Fractal Fract., 7(2023), 1–11.
  • Gao, T., Farid, G., Ahmad, A., Luangboon, W., Nonlaopon, K., Fractional Minkowski type inequalities via the unified generalized fractional integral operator, Journ. Funct. Spaces, 2022(2022), 1–11.
  • Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V., Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, New York, 2020.
  • Hasan, S.Q., Abubakar, U.M., Kaurangini, M.L., The new integral transform ”SUM transform” and its properties, Palestine Journ. Math., 12(2023), 30–45.
  • Hassan, S.Q., Mansour, A.I., Abubakar,U.M., Applications of the SUM integral transform in science and technology, Wasit Journ. Pure sci., 2(2023), 29–40.
  • Jung, C.Y., Farid, G., Yasmeen, H., Nonlaopon, K., More on the unified Mitteg-Leffler function, Symmetry, 14(2022), 1–11.
  • Kaurangini, M.L., Chaudhary, M.P., Abubakar, U.M., Kiymaz, I.O., Ata, E., On some special functions with bi-Fox-Wright function kernel, Journ. Ramanujan Soc. Math. Sci., 11(2023), 17–42.
  • Khan, M.A., Ahmed, S., On some properties of the generalized Mittag-Leffler function, Springer Plus, 2(2013), 1–9.
  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Vol. 204, 2006.
  • Kumar, D., Solution of fractional kinetic equation by a class of integral transform of pathway type, Journ. Math. PhyS., 54(2013), 1–13.
  • Mathai, A.M., Saxena, R.K., Hanbould, H.J., The H-function, Theory and Applications, Springer, New York, 2010.
  • Mohammed M-H., Holambe T.L., A Q function in fractional calculus, Journ.Basic Appl. Resear., 6(2015), 248–252.
  • Nonlaopon, K., Farid, G., Yasmeen, H., Shah, F.A., Jung, C.Y., Generalization of some fractional integral operator inequalities for convex function via unified Mittag-Leffler function, Symmetry, 14(2022), 1–14.
  • Ozarslan, M.A., Yilmaz, B., The extended Mittag-Leffler function and its properties, Journ. Inequal. Appl., 85(2014), 1–10.
  • Qi, F., Bound for the ratio of two gamma functions, Journ. Inequal. Appl., 2020(2020), 1–84.
  • Raham, A., Baleanu, D., Qurashi, M., The extended Mittag-Leffler function via fractional calculus, Journ. Nonl. Sci. Appl., 10(2017), 4244–4253.
  • Salim, T.O., Farag, A.W., A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, Journ. Fract. Calc. Appl., 3(2012), 1–13.
  • Sontakke, B.R., Kamble, G.P., Mohammed, M.H., Some integral transform of generalized Mittag-Leffler functions, Integr. Journ, Pure Appl. Math., 108(2016), 327–339.
  • Suthar, D.L., Khan, A.M., Alaria, A., Purohit, D., Singh, J., Extended Bessel-Maitland function an its properties pertaining to integral transforms and fractional calculus, Mathematics, 5(2020), 1400–1410.
  • Zhang, X., Farid, G., Reunsumrit, J., Ahmad, A, Sitthiwirattham, T., Some fractional integral inequalities involving Mittag-Leffler kernel, Journ. Math., 2022(2022), 1–12.
  • Zhang, Y., Farid, G., Salleh, Z., Ahmad, A., A unified Mittag-Leffler function and associated fractional integral operator, Math. Prob. Engr., 2021(2021), 1–9.
  • Zhou, S.S., Farid, G., Ahmad, A., Fractional version of Minkowski-type integral inequalities via unified Mittag-Leffler function, Advan. Cont. Disc. Models, 222(2022), 1–10.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions, Applied Mathematics (Other)
Journal Section Research Article
Authors

Muhammad Kaurangini 0000-0001-9144-9433

Umar Muhammad Abubakar 0000-0003-3935-4829

Enes Ata 0000-0001-6893-8693

Submission Date September 8, 2024
Acceptance Date October 6, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Kaurangini, M., Abubakar, U. M., & Ata, E. (2025). Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators. Turkish Journal of Mathematics and Computer Science, 17(2), 534-543. https://doi.org/10.47000/tjmcs.1545292
AMA 1.Kaurangini M, Abubakar UM, Ata E. Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators. TJMCS. 2025;17(2):534-543. doi:10.47000/tjmcs.1545292
Chicago Kaurangini, Muhammad, Umar Muhammad Abubakar, and Enes Ata. 2025. “Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators”. Turkish Journal of Mathematics and Computer Science 17 (2): 534-43. https://doi.org/10.47000/tjmcs.1545292.
EndNote Kaurangini M, Abubakar UM, Ata E (December 1, 2025) Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators. Turkish Journal of Mathematics and Computer Science 17 2 534–543.
IEEE [1]M. Kaurangini, U. M. Abubakar, and E. Ata, “Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators”, TJMCS, vol. 17, no. 2, pp. 534–543, Dec. 2025, doi: 10.47000/tjmcs.1545292.
ISNAD Kaurangini, Muhammad - Abubakar, Umar Muhammad - Ata, Enes. “Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators”. Turkish Journal of Mathematics and Computer Science 17/2 (December 1, 2025): 534-543. https://doi.org/10.47000/tjmcs.1545292.
JAMA 1.Kaurangini M, Abubakar UM, Ata E. Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators. TJMCS. 2025;17:534–543.
MLA Kaurangini, Muhammad, et al. “Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 2, Dec. 2025, pp. 534-43, doi:10.47000/tjmcs.1545292.
Vancouver 1.Kaurangini M, Abubakar UM, Ata E. Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators. TJMCS [Internet]. 2025 Dec. 1;17(2):534-43. Available from: https://izlik.org/JA67UN69TY