Unified Mittag-Leffler Function and Associated Integral Transforms and Fractional Integral Operators
Year 2025,
Volume: 17 Issue: 2, 534 - 543, 30.12.2025
Muhammad Kaurangini
,
Umar Muhammad Abubakar
,
Enes Ata
Abstract
Unified Mittag-Leffler function defined by using beta function that consist of two Fox-Wright function in its kernel is introduced and its relation to Fox-Wright, Fox-$H$ functions and Mellin-Barnes type integral are illustrate. The beta, SUM, Laplace, Whittaker, $K$- and $P_{\partial}$- integral transforms are applied to the function and generalized formulas are obtained in form of both unified Mittag-Leffler and Fox-Wright functions. The convergence and differential formulas of this unified Mittag-Leffler function is also demonstrated.
References
-
Agarwal, P., Suthar, D.L., Jain, S., Momani, S., The extended multi-index Mittag-Leffler functions and their properties connected with fractional calculus and integral transforms, Thai Journ. Math., 20(2022), 1251–1266.
-
Anderic, M., Farid, G., Pecaric, J., A further extension of Mittag-Leffler function, Journ. Fract. Calc. Appl., 2(2018), 1377–1395.
-
Bhatnagar, D., Pandey, R.M., A study of some integral transforms on Q function, South East Asian Journ. Math. Sci., 16(2020), 99–110.
-
Bin-Saad, M.G. Al-Hashami, A., Younis, J.A., Some fractional calculus properties of bivariate Mittag-Leffler function, Journ. Fract. Calc. Appl., 14(2023), 214–227.
-
Chen, D., Anwar, M., Farid, G., Yasmeen, H., Further generalizations of some fractional integral inequalities, Fractal Fract., 7(2023), 1–11.
-
Gao, T., Farid, G., Ahmad, A., Luangboon, W., Nonlaopon, K., Fractional Minkowski type inequalities via the unified generalized fractional integral operator, Journ. Funct. Spaces, 2022(2022), 1–11.
-
Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V., Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, New York, 2020.
-
Hasan, S.Q., Abubakar, U.M., Kaurangini, M.L., The new integral transform ”SUM transform” and its properties, Palestine Journ. Math., 12(2023), 30–45.
-
Hassan, S.Q., Mansour, A.I., Abubakar,U.M., Applications of the SUM integral transform in science and technology, Wasit Journ. Pure sci., 2(2023), 29–40.
-
Jung, C.Y., Farid, G., Yasmeen, H., Nonlaopon, K., More on the unified Mitteg-Leffler function, Symmetry, 14(2022), 1–11.
-
Kaurangini, M.L., Chaudhary, M.P., Abubakar, U.M., Kiymaz, I.O., Ata, E., On some special functions with bi-Fox-Wright function kernel, Journ. Ramanujan Soc. Math. Sci., 11(2023), 17–42.
-
Khan, M.A., Ahmed, S., On some properties of the generalized Mittag-Leffler function, Springer Plus, 2(2013), 1–9.
-
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Vol. 204, 2006.
-
Kumar, D., Solution of fractional kinetic equation by a class of integral transform of pathway type, Journ. Math. PhyS., 54(2013), 1–13.
-
Mathai, A.M., Saxena, R.K., Hanbould, H.J., The H-function, Theory and Applications, Springer, New York, 2010.
-
Mohammed M-H., Holambe T.L., A Q function in fractional calculus, Journ.Basic Appl. Resear., 6(2015), 248–252.
-
Nonlaopon, K., Farid, G., Yasmeen, H., Shah, F.A., Jung, C.Y., Generalization of some fractional integral operator inequalities for convex function via unified Mittag-Leffler function, Symmetry, 14(2022), 1–14.
-
Ozarslan, M.A., Yilmaz, B., The extended Mittag-Leffler function and its properties, Journ. Inequal. Appl., 85(2014), 1–10.
-
Qi, F., Bound for the ratio of two gamma functions, Journ. Inequal. Appl., 2020(2020), 1–84.
-
Raham, A., Baleanu, D., Qurashi, M., The extended Mittag-Leffler function via fractional calculus, Journ. Nonl. Sci. Appl., 10(2017), 4244–4253.
-
Salim, T.O., Farag, A.W., A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, Journ. Fract. Calc. Appl., 3(2012), 1–13.
-
Sontakke, B.R., Kamble, G.P., Mohammed, M.H., Some integral transform of generalized Mittag-Leffler functions, Integr. Journ, Pure Appl. Math., 108(2016), 327–339.
-
Suthar, D.L., Khan, A.M., Alaria, A., Purohit, D., Singh, J., Extended Bessel-Maitland function an its properties pertaining to integral transforms and fractional calculus, Mathematics, 5(2020), 1400–1410.
-
Zhang, X., Farid, G., Reunsumrit, J., Ahmad, A, Sitthiwirattham, T., Some fractional integral inequalities involving Mittag-Leffler kernel, Journ. Math., 2022(2022), 1–12.
-
Zhang, Y., Farid, G., Salleh, Z., Ahmad, A., A unified Mittag-Leffler function and associated fractional integral operator, Math. Prob. Engr., 2021(2021), 1–9.
-
Zhou, S.S., Farid, G., Ahmad, A., Fractional version of Minkowski-type integral inequalities via unified Mittag-Leffler function, Advan. Cont. Disc. Models, 222(2022), 1–10.