Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 1, 26 - 32, 30.06.2025
https://doi.org/10.47000/tjmcs.1553098

Abstract

References

  • Audenaert, Koenraad M.R., Variance bounds, with an application to norm bounds for commutators, Linear Algebra and Its Applications, 432(2010), 1126–1143.
  • Bozkurt, D., On ℓp norms of Cauchy-Toeplitz matrices, Linear and Multilinear Algebra, 44(1998), 341–346.
  • Böttcher, A., Wenzel, D., How big can the commutator of two matrices be and how big is it typically?, Linear Algebra Appl., 403(2005), 216–228.
  • Böttcher, A., Wenzel, D., The Frobenius norm and the commutator, Linear Algebra and Its Applications, 429(2008), 1864–1885.
  • Chruscinski, D., Kimura, G., Ohno, H., Singal, T., One-parameter generalization of the B¨ottcher-Wenzel inequality and its application to open quantum dynamics, Linear Algebra and Its Applications, 656(2023), 158–166.
  • Gil, M., A sharp bound for the Frobenius norm of self-commutators of matrices, Linear & Multilinear Algebra, 65(11)(2017), 2333–2339.
  • Horn, R.A., & Johnson, C.R., Matrix Analysis, Cambridge University Press, 2012.
  • Laszlo, L., Proof of B¨ottcher and Wenzel’s conjecture on commutator norms for 3-by-3 matrices, Linear Algebra Appl., 422(2007), 659–663.
  • Lu, Z., Normal Scalar Curvature Conjecture and Its applications, Journal of Functional Analysis, 261(2011), 1284–1308.
  • Moenck, R., On computing closed forms for summations, Proceedings of the MACSYMA User’s Conference, 225–236, 1977.
  • Solak, S., Bahşi, M., On the Frobenius norm of commutator of Cauchy-Toeplitz matrix and exchange matrix, Turkish Journal of Mathematics, 47(5)(2023), 1550–1557.
  • Solak, S., Bozkurt, D., On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Applied Mathematics and Computations, 140(2003), 231–238.
  • Solak, S., Bozkurt, D.,A note on bound for norms of Cauchy-Hankel matrices, Numerical Linear Algebra With Applications, 10(4)(2003), 377–382.
  • Türkmen, R., Bozkurt, D., On the bounds for the norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Applied Mathematics and Computations, 132(2002), 633–642.
  • Tyrtysnikov, E.E., Cauchy-Toeplitz matrices and some applications, Linear Algebra and its Applications, 149(1991), 1–18.
  • Vong, S.W., Jin, X.Q., Proof of B¨ottcher and Wenzel’s conjecture, Oper. Matrices 2, (2008), 435–442.
  • Wu, Y.D., Liu, X.Q., A short note on the Frobenius norm of the commutator, Mathematical Notes, 87(5/6)(2010), 903–907.

On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix

Year 2025, Volume: 17 Issue: 1, 26 - 32, 30.06.2025
https://doi.org/10.47000/tjmcs.1553098

Abstract

This paper gives upper and lower bounds for the Frobenius norm of the commutator of the exchange matrix and the Cauchy-Hankel matrix of the form $H_n=\left(\dfrac{2}{1+2(i+j)}\right)_{i,j=1}^n$.

References

  • Audenaert, Koenraad M.R., Variance bounds, with an application to norm bounds for commutators, Linear Algebra and Its Applications, 432(2010), 1126–1143.
  • Bozkurt, D., On ℓp norms of Cauchy-Toeplitz matrices, Linear and Multilinear Algebra, 44(1998), 341–346.
  • Böttcher, A., Wenzel, D., How big can the commutator of two matrices be and how big is it typically?, Linear Algebra Appl., 403(2005), 216–228.
  • Böttcher, A., Wenzel, D., The Frobenius norm and the commutator, Linear Algebra and Its Applications, 429(2008), 1864–1885.
  • Chruscinski, D., Kimura, G., Ohno, H., Singal, T., One-parameter generalization of the B¨ottcher-Wenzel inequality and its application to open quantum dynamics, Linear Algebra and Its Applications, 656(2023), 158–166.
  • Gil, M., A sharp bound for the Frobenius norm of self-commutators of matrices, Linear & Multilinear Algebra, 65(11)(2017), 2333–2339.
  • Horn, R.A., & Johnson, C.R., Matrix Analysis, Cambridge University Press, 2012.
  • Laszlo, L., Proof of B¨ottcher and Wenzel’s conjecture on commutator norms for 3-by-3 matrices, Linear Algebra Appl., 422(2007), 659–663.
  • Lu, Z., Normal Scalar Curvature Conjecture and Its applications, Journal of Functional Analysis, 261(2011), 1284–1308.
  • Moenck, R., On computing closed forms for summations, Proceedings of the MACSYMA User’s Conference, 225–236, 1977.
  • Solak, S., Bahşi, M., On the Frobenius norm of commutator of Cauchy-Toeplitz matrix and exchange matrix, Turkish Journal of Mathematics, 47(5)(2023), 1550–1557.
  • Solak, S., Bozkurt, D., On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Applied Mathematics and Computations, 140(2003), 231–238.
  • Solak, S., Bozkurt, D.,A note on bound for norms of Cauchy-Hankel matrices, Numerical Linear Algebra With Applications, 10(4)(2003), 377–382.
  • Türkmen, R., Bozkurt, D., On the bounds for the norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Applied Mathematics and Computations, 132(2002), 633–642.
  • Tyrtysnikov, E.E., Cauchy-Toeplitz matrices and some applications, Linear Algebra and its Applications, 149(1991), 1–18.
  • Vong, S.W., Jin, X.Q., Proof of B¨ottcher and Wenzel’s conjecture, Oper. Matrices 2, (2008), 435–442.
  • Wu, Y.D., Liu, X.Q., A short note on the Frobenius norm of the commutator, Mathematical Notes, 87(5/6)(2010), 903–907.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Ahmet Öksüz 0000-0002-7355-5176

Süleyman Solak 0000-0003-4085-277X

Submission Date September 19, 2024
Acceptance Date March 14, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Öksüz, A., & Solak, S. (2025). On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix. Turkish Journal of Mathematics and Computer Science, 17(1), 26-32. https://doi.org/10.47000/tjmcs.1553098
AMA Öksüz A, Solak S. On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix. TJMCS. June 2025;17(1):26-32. doi:10.47000/tjmcs.1553098
Chicago Öksüz, Ahmet, and Süleyman Solak. “On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 26-32. https://doi.org/10.47000/tjmcs.1553098.
EndNote Öksüz A, Solak S (June 1, 2025) On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix. Turkish Journal of Mathematics and Computer Science 17 1 26–32.
IEEE A. Öksüz and S. Solak, “On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix”, TJMCS, vol. 17, no. 1, pp. 26–32, 2025, doi: 10.47000/tjmcs.1553098.
ISNAD Öksüz, Ahmet - Solak, Süleyman. “On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix”. Turkish Journal of Mathematics and Computer Science 17/1 (June2025), 26-32. https://doi.org/10.47000/tjmcs.1553098.
JAMA Öksüz A, Solak S. On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix. TJMCS. 2025;17:26–32.
MLA Öksüz, Ahmet and Süleyman Solak. “On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 26-32, doi:10.47000/tjmcs.1553098.
Vancouver Öksüz A, Solak S. On the Frobenius Norm of Commutator of Cauchy-Hankel Matrix and Exchange Matrix. TJMCS. 2025;17(1):26-32.