Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 2, 573 - 585, 30.12.2025
https://doi.org/10.47000/tjmcs.1581601

Abstract

References

  • Alfred, B.U., An Introduction to Fibonacci Discovery, The Fibonacci Association, California, 1965.
  • Azman, H.,On The Fibonacci Sequence and Hessenberg Matrices,, Gazi University Institute of Science and Technology, Master Thesis, Ankara, 2009.
  • Bicknell, M., Hoggatt, V.E., A Primer for the Fibonacci Numbers, The Fibonacci Quarterly, California, 1973.
  • Bong, N.H., Fibonacci matrices and matrix representation of Fibonacci numbers, Southeast Asian Bull. Math., 23(3)(1999), 357–374.
  • Cahill, N.D., D’Errico, J.R., Narayan, D.A., Narayan, J.Y., Fibonacci Deteminants, College Math. Journal, 33(3)(2002), 221–225.
  • Ching, L., The maximum determinants of an n × n lower Hessenberg (0,1) matrix, Linear Algebra and Its Applications, 183(1993), 147–153.
  • da Fonseca, C.M., Yılmaz, F.,Some comments on k-tridiagonal matrices: Determinant, spectra, and inversion, Applied Mathematics and Computation, 270(2015), 644–647.
  • da Fonseca, C.M., Kizilateş, C., Terzioğlu, N. The determinants and the inverses of the ( 2ak2+2, a, a)− Lk-Toeplitz and the (2, k2 +2, k2 +2)− Fk- Toeplitz matrices, Logic Journal of the IGPL, 33(6)(2025).
  • da Fonseca, C.M., Kızılateş, C., Terzioğlu, N., The determinant and a factorization of a Toeplitz matrix with some type of Horadam numbers entries, Logic Journal of the IGPL, 33(6)(2024).
  • Gündoğan, H., Keçilioğlu, O., Lorentzian Matrix Multiplication and the Motions on Lorentzian Plane, Glasnık Matematıcki, 41(2)(2006), 329–334.
  • Horadam, A.F., Pell identities, The Fibonacci Quarterly, 9(3)(1971), 245-252.
  • Horadam, A. F., A generalized Fibonacci sequence, Americ. Math. Monthly, 68(5)(1961), 455– 459.
  • Jia, J.T., Xie, R., Yılmaz, F. Fast tridiagonalization of (p, q)-pentadiagonal matrices and its applications, J Supercomput 80(2024), 19414—19432.
  • Kilic, E.,Tasci,D., On the generalized order-k Fibonacci and Lucas numbers, Rocky Mountain J. Math., 36(6)(2006), 1915–1926.
  • Kızılateş, C. , New families of Horadam numbers associated with finite operators and their applications, Mathematical Methods in the Applied Sciences, 44(4)(2021), 14371–14381.
  • Kızılateş, C., Du, W.S., Qi, F., Several determinantal expressions of generalized tribonacci polynomials and sequences,Tamkang Journal of Mathematics, 53(3)(2022), 277–291.
  • Kızılateş, C., Terzioğlu, N., On r-min and r-max matrices. J. Appl. Math. Comput. 68(2022), 4559–4588.
  • Lang, S.,Linear Algebra, Addison-Wesley Publishing Co., Reading, MA., (1971).
  • Lee, G.Y., k-Lucas numbers and associated bipartite graphs. Linear Algebra Appl., 320(1-3)(2000), 51–61.
  • Miles, E.P., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly, 67(8)(1960), 745–752.
  • Morteza, E., More on the Fibonacci sequence and Hessenberg matrices, Integers, 6(A32)(2006), 1-8.
  • Qi, F., Kızılateş, C., Du, W.S., A closed formula for the Horadam polynomials in terms of a tridiagonal determinant, Symettery, 11(6)(2019), 782.
  • Ruggles, I.D., Some Fibonacci results using Fibonacci-type sequences, The Fibonacci Quarterly, 1(2)(1963), 75–80.
  • Shi, B., Kızılateş, C., Geometric r-frank matrix: some properties and applications, Computational and Applied Mathematics. 44(8)(2025).
  • Shi, B., Kızılateş, C., A new generalization of the Frank matrix and its some properties, Comp. Appl. Math. 43(19)(2024).
  • Shi, B., Kızılateş, C., On linear algebra of r-Hankel and r-Toeplitz matrices with geometric sequence. J. Appl. Math. Comput. 70(2024), 4563–4579.
  • Strang, G., Introduction to Linear Algebra, Wellesley-Cambridge, USA, 1998.
  • Tasci,D.,Kilic, E., On the order-k generalized Lucas numbers, Applied Mathematics and Computation, 155(3)(2004), 637–641.
  • Vajda, S., Fibonacci and Lucas numbers, and the golden section: Theory and applications, John Wiley and Sons, New York, 1989.
  • Vorob’ev, N.N., Fibonacci numbers, Blaisdell, New York, 1961.

Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences

Year 2025, Volume: 17 Issue: 2, 573 - 585, 30.12.2025
https://doi.org/10.47000/tjmcs.1581601

Abstract

The research aims to construct a new type of matrix called the Fibonacci-Hessenberg-Lorentz matrix by multiplying Fibonacci-Hessenberg matrices with Lorentz matrix multiplication. The study will start by examining the properties of Hessenberg and tridiagonal matrices and then focus on developing the Fibonacci-Hessenberg matrix using Fibonacci sequences. By multiplication it with a Lorentz matrix multiplication, the resulting matrix, the Fibonacci-Hessenberg-Lorentz matrix, will be analyzed to obtain special number sequences through its determinants for $n\geq1$.

The primary objective is to explore whether the determinants of these matrices can generate new or known number sequences, where the elements are expressed as functions of the matrix parameters. Furthermore, the research will attempt to generalize these sequences of using Fibonacci numbers to establish a generalized formula for their terms. Ultimately, the goal is to derive a mathematical representation that connects the characteristics of the newly defined matrices to well-known special sequences in mathematics.

References

  • Alfred, B.U., An Introduction to Fibonacci Discovery, The Fibonacci Association, California, 1965.
  • Azman, H.,On The Fibonacci Sequence and Hessenberg Matrices,, Gazi University Institute of Science and Technology, Master Thesis, Ankara, 2009.
  • Bicknell, M., Hoggatt, V.E., A Primer for the Fibonacci Numbers, The Fibonacci Quarterly, California, 1973.
  • Bong, N.H., Fibonacci matrices and matrix representation of Fibonacci numbers, Southeast Asian Bull. Math., 23(3)(1999), 357–374.
  • Cahill, N.D., D’Errico, J.R., Narayan, D.A., Narayan, J.Y., Fibonacci Deteminants, College Math. Journal, 33(3)(2002), 221–225.
  • Ching, L., The maximum determinants of an n × n lower Hessenberg (0,1) matrix, Linear Algebra and Its Applications, 183(1993), 147–153.
  • da Fonseca, C.M., Yılmaz, F.,Some comments on k-tridiagonal matrices: Determinant, spectra, and inversion, Applied Mathematics and Computation, 270(2015), 644–647.
  • da Fonseca, C.M., Kizilateş, C., Terzioğlu, N. The determinants and the inverses of the ( 2ak2+2, a, a)− Lk-Toeplitz and the (2, k2 +2, k2 +2)− Fk- Toeplitz matrices, Logic Journal of the IGPL, 33(6)(2025).
  • da Fonseca, C.M., Kızılateş, C., Terzioğlu, N., The determinant and a factorization of a Toeplitz matrix with some type of Horadam numbers entries, Logic Journal of the IGPL, 33(6)(2024).
  • Gündoğan, H., Keçilioğlu, O., Lorentzian Matrix Multiplication and the Motions on Lorentzian Plane, Glasnık Matematıcki, 41(2)(2006), 329–334.
  • Horadam, A.F., Pell identities, The Fibonacci Quarterly, 9(3)(1971), 245-252.
  • Horadam, A. F., A generalized Fibonacci sequence, Americ. Math. Monthly, 68(5)(1961), 455– 459.
  • Jia, J.T., Xie, R., Yılmaz, F. Fast tridiagonalization of (p, q)-pentadiagonal matrices and its applications, J Supercomput 80(2024), 19414—19432.
  • Kilic, E.,Tasci,D., On the generalized order-k Fibonacci and Lucas numbers, Rocky Mountain J. Math., 36(6)(2006), 1915–1926.
  • Kızılateş, C. , New families of Horadam numbers associated with finite operators and their applications, Mathematical Methods in the Applied Sciences, 44(4)(2021), 14371–14381.
  • Kızılateş, C., Du, W.S., Qi, F., Several determinantal expressions of generalized tribonacci polynomials and sequences,Tamkang Journal of Mathematics, 53(3)(2022), 277–291.
  • Kızılateş, C., Terzioğlu, N., On r-min and r-max matrices. J. Appl. Math. Comput. 68(2022), 4559–4588.
  • Lang, S.,Linear Algebra, Addison-Wesley Publishing Co., Reading, MA., (1971).
  • Lee, G.Y., k-Lucas numbers and associated bipartite graphs. Linear Algebra Appl., 320(1-3)(2000), 51–61.
  • Miles, E.P., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly, 67(8)(1960), 745–752.
  • Morteza, E., More on the Fibonacci sequence and Hessenberg matrices, Integers, 6(A32)(2006), 1-8.
  • Qi, F., Kızılateş, C., Du, W.S., A closed formula for the Horadam polynomials in terms of a tridiagonal determinant, Symettery, 11(6)(2019), 782.
  • Ruggles, I.D., Some Fibonacci results using Fibonacci-type sequences, The Fibonacci Quarterly, 1(2)(1963), 75–80.
  • Shi, B., Kızılateş, C., Geometric r-frank matrix: some properties and applications, Computational and Applied Mathematics. 44(8)(2025).
  • Shi, B., Kızılateş, C., A new generalization of the Frank matrix and its some properties, Comp. Appl. Math. 43(19)(2024).
  • Shi, B., Kızılateş, C., On linear algebra of r-Hankel and r-Toeplitz matrices with geometric sequence. J. Appl. Math. Comput. 70(2024), 4563–4579.
  • Strang, G., Introduction to Linear Algebra, Wellesley-Cambridge, USA, 1998.
  • Tasci,D.,Kilic, E., On the order-k generalized Lucas numbers, Applied Mathematics and Computation, 155(3)(2004), 637–641.
  • Vajda, S., Fibonacci and Lucas numbers, and the golden section: Theory and applications, John Wiley and Sons, New York, 1989.
  • Vorob’ev, N.N., Fibonacci numbers, Blaisdell, New York, 1961.
There are 30 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

İbrahim Gökcan 0000-0002-6933-8494

Ali Hikmet Değer 0000-0003-0764-715X

Submission Date November 8, 2024
Acceptance Date October 20, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Gökcan, İ., & Değer, A. H. (2025). Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences. Turkish Journal of Mathematics and Computer Science, 17(2), 573-585. https://doi.org/10.47000/tjmcs.1581601
AMA Gökcan İ, Değer AH. Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences. TJMCS. December 2025;17(2):573-585. doi:10.47000/tjmcs.1581601
Chicago Gökcan, İbrahim, and Ali Hikmet Değer. “Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences”. Turkish Journal of Mathematics and Computer Science 17, no. 2 (December 2025): 573-85. https://doi.org/10.47000/tjmcs.1581601.
EndNote Gökcan İ, Değer AH (December 1, 2025) Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences. Turkish Journal of Mathematics and Computer Science 17 2 573–585.
IEEE İ. Gökcan and A. H. Değer, “Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences”, TJMCS, vol. 17, no. 2, pp. 573–585, 2025, doi: 10.47000/tjmcs.1581601.
ISNAD Gökcan, İbrahim - Değer, Ali Hikmet. “Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences”. Turkish Journal of Mathematics and Computer Science 17/2 (December2025), 573-585. https://doi.org/10.47000/tjmcs.1581601.
JAMA Gökcan İ, Değer AH. Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences. TJMCS. 2025;17:573–585.
MLA Gökcan, İbrahim and Ali Hikmet Değer. “Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 2, 2025, pp. 573-85, doi:10.47000/tjmcs.1581601.
Vancouver Gökcan İ, Değer AH. Investigation of Determinants of Fibonacci-Hessenberg-Lorentz Matrices and Special Number Sequences. TJMCS. 2025;17(2):573-85.