Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 1, 93 - 101, 30.06.2025
https://doi.org/10.47000/tjmcs.1590392

Abstract

References

  • Akar, M., Yüce, S., Şahin, S., On the Dual Hyperbolic Numbers and the Complex Hyperbolic Numbers, Journal of Computer Science, Computational Mathematics, 8(1)(2018), 1–6.
  • Alagöz, Y., Oral, K.H., Yüce, S., Split quaternion matrices, Miskolc Mathematical Notes, 13(2)(2012), 223–232.
  • Catarino, P., On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sci., 9(1)(2014), 37–42.
  • Catoni, F., Cannata, R., Catoni, V., Zampetti, P., Hyperbolic trigonometry in two-dimensional space-time geometry, Preprint at https://arxiv.org/abs/math-ph/0508011, (2005).
  • Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P., The Mathematics of Minkowski Space-time with an Introduction to Commutative Hypercomplex Numbers, Birkhauser Verlag, Berlin, 2008.
  • Cherkis, S.A., Octonions, monopoles, and knots, Letters in Mathematical Physics, 105(2015), 641–659.
  • Conway, H.C., Smith, A.S., On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, AK Peters, Natick, USA, 2003.
  • Dağdeviren, A., A Generalization of complex, dual, and hyperbolic quaternions: hybrid quaternions, Filomat, 33(25)(2023), 8441–8454.
  • Dağdeviren, A., Kürüz, F., Catarino, P., On Leonardo Pisano dual quaternions, Journal of Information and Optimization Sciences, 45(2024), 131–143.
  • Dağdeviren, A., Yüce, S., Dual quaternions and dual quaternionic curves, Filomat, 33(4)(2019), 1037–1046.
  • Demir, S., Tanıslı, M., Candemir, N., Hyperbolic quaternions Fformulation of electromagnetism, Adv. Appl. Clifford Algebras, (2010), 547–563.
  • Ercan, Z., Yüce, S., On properties of the dual quaternions, European Journal of Pure and Applied Mathematics, 4(2)(2011), 142–146.
  • Erdoğdu, M., Özdemir, M., On complex split quaternion matrices, Advances in Applied Clifford Algebras, 23(2013), 625–638.
  • Erkan, E., Dağdeviren, A., k-Fibonacci and k-Lucas hybrid numbers, Tamap Journal of Mathematics and Statistics, (2021).
  • Girard, P.R., Quaternions, Clifford Algebras and Relativistic Physics, Springer Science, Business Media, 2007.
  • Harkin, A.A., Harkin J.B., Geometry of generalized complex numbers, Math. Mag., 77(2)(2004), 118–129.
  • Klawitter, D., Clifford Algebras: Geometric Modelling and Chain Geometries with Application in Kinematics, Springer: Berlin, Germany, 2014.
  • Kürüz, F., Dağdeviren, A., Matrices with hyperbolic number entries, Turkish Journal of Mathematics and Computer Science, 14(2)(2022), 306–313.
  • Lin, H.Y., Cahay, M., Vellambi, B.N., Morris, D., A generalization of quaternions and their app, Symmetry, 14(3)(2022), 599.
  • MacFarlane, A., Hyperbolic Quaternions, Proc. Roy. Soc. Edinburg, 1900.
  • Motter, A.E., Rosa, M.A.F., Hyperbolic calculus, Adv. Appl. Clifford Algebras, 8(1)(1998), 109–128.
  • Majernik, V., Basic space-time transformations expressed by means of two-component number systems, Acta Phys. Pol. A., 86(1)(1994), 291–295.
  • Majernik, V., Quaternion formulation of the Galilean space-time transformation, Acta Phys., 56(1)(2006), 9–14.
  • Mersin, E.Ö., Hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers, Journal of Engineering Technology and Applied Sciences, 8(1)(2023), 1–13.
  • Mladenova, C., Robot problems over configurational manifold of vector-parameters and dual vector-parameters, J. Intell. Robot. Syst., 11(1994), 117–133.
  • Özdemir, M., Introduction to hybrid numbers, Adv. Appl. Clifford Algebras, 28(1)(2018), 1–32.
  • Pennestr`ı, E., Stefanelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(3)(2007), 323–344.
  • Poodiack, R.D., LeClair, K.J., Fundamental theorems of algebra for the perplexes, College Math. J., 40(2009), 322–335.
  • Rochon, D., Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea Fasc. Mat., 11(2004), 71–110.
  • Sangwine, S.J., Alfsmann, D., Determination of the biquaternion divisors of zero, including the idempotents and nilpotents, Adv. Appl. Clifford Algebras, 20(2)(2010), 401–410.
  • Sangwine, S.J., Ell, T.A., LeBihan, N., Fundamental representations and algebraic properties of biquaternions or complexified quaternions, Adv. Appl. Clifford Algebras, 21(3)(2011), 607–636.
  • Selig, J.M., Geometric Fundamentals of Robotics, 2nd ed. Springer, New York, 2005.
  • Sobczyk, G., The hyperbolic number plane, The College Mathematics Journal, 26(4)(1995), 268–280.
  • Sporn, H., Pythagorean triples, complex numbers, and perplex numbers, The College Mathematics Journal, 48(2)(2017), 115–122.
  • Tevian, D., The Geometry of the Octonions, Oregon State University, Word Scientific Publishing Company, 2012.
  • Ulrych, S., Relativistic quantum physics with hyperbolic numbers, Phys. Lett. B, 625(2005), 313–323.
  • Veldkamp, G.R., On the use of dual numbers, vectors and matrices in instantaneous kinematics, Mech. and Machine Theory, 11(2)(1976), 141–156.
  • Yaglom, I.M., A simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag Inc. New York, 1979.

On Dual Type Octonions and Their Properties

Year 2025, Volume: 17 Issue: 1, 93 - 101, 30.06.2025
https://doi.org/10.47000/tjmcs.1590392

Abstract

In this study, we will define dual-type octonions by drawing inspiring from dual quaternions and Galilean geometry. Besides giving the basic properties of dual-type octonions and defining isotropic and non-isotropic dual-type octonions, we present Euler's and De Moivre's formulas for dual-type octonions. Finally, we give a matrix representation of dual-type octonions.

References

  • Akar, M., Yüce, S., Şahin, S., On the Dual Hyperbolic Numbers and the Complex Hyperbolic Numbers, Journal of Computer Science, Computational Mathematics, 8(1)(2018), 1–6.
  • Alagöz, Y., Oral, K.H., Yüce, S., Split quaternion matrices, Miskolc Mathematical Notes, 13(2)(2012), 223–232.
  • Catarino, P., On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sci., 9(1)(2014), 37–42.
  • Catoni, F., Cannata, R., Catoni, V., Zampetti, P., Hyperbolic trigonometry in two-dimensional space-time geometry, Preprint at https://arxiv.org/abs/math-ph/0508011, (2005).
  • Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P., The Mathematics of Minkowski Space-time with an Introduction to Commutative Hypercomplex Numbers, Birkhauser Verlag, Berlin, 2008.
  • Cherkis, S.A., Octonions, monopoles, and knots, Letters in Mathematical Physics, 105(2015), 641–659.
  • Conway, H.C., Smith, A.S., On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, AK Peters, Natick, USA, 2003.
  • Dağdeviren, A., A Generalization of complex, dual, and hyperbolic quaternions: hybrid quaternions, Filomat, 33(25)(2023), 8441–8454.
  • Dağdeviren, A., Kürüz, F., Catarino, P., On Leonardo Pisano dual quaternions, Journal of Information and Optimization Sciences, 45(2024), 131–143.
  • Dağdeviren, A., Yüce, S., Dual quaternions and dual quaternionic curves, Filomat, 33(4)(2019), 1037–1046.
  • Demir, S., Tanıslı, M., Candemir, N., Hyperbolic quaternions Fformulation of electromagnetism, Adv. Appl. Clifford Algebras, (2010), 547–563.
  • Ercan, Z., Yüce, S., On properties of the dual quaternions, European Journal of Pure and Applied Mathematics, 4(2)(2011), 142–146.
  • Erdoğdu, M., Özdemir, M., On complex split quaternion matrices, Advances in Applied Clifford Algebras, 23(2013), 625–638.
  • Erkan, E., Dağdeviren, A., k-Fibonacci and k-Lucas hybrid numbers, Tamap Journal of Mathematics and Statistics, (2021).
  • Girard, P.R., Quaternions, Clifford Algebras and Relativistic Physics, Springer Science, Business Media, 2007.
  • Harkin, A.A., Harkin J.B., Geometry of generalized complex numbers, Math. Mag., 77(2)(2004), 118–129.
  • Klawitter, D., Clifford Algebras: Geometric Modelling and Chain Geometries with Application in Kinematics, Springer: Berlin, Germany, 2014.
  • Kürüz, F., Dağdeviren, A., Matrices with hyperbolic number entries, Turkish Journal of Mathematics and Computer Science, 14(2)(2022), 306–313.
  • Lin, H.Y., Cahay, M., Vellambi, B.N., Morris, D., A generalization of quaternions and their app, Symmetry, 14(3)(2022), 599.
  • MacFarlane, A., Hyperbolic Quaternions, Proc. Roy. Soc. Edinburg, 1900.
  • Motter, A.E., Rosa, M.A.F., Hyperbolic calculus, Adv. Appl. Clifford Algebras, 8(1)(1998), 109–128.
  • Majernik, V., Basic space-time transformations expressed by means of two-component number systems, Acta Phys. Pol. A., 86(1)(1994), 291–295.
  • Majernik, V., Quaternion formulation of the Galilean space-time transformation, Acta Phys., 56(1)(2006), 9–14.
  • Mersin, E.Ö., Hybrinomials related to hyper-Fibonacci and hyper-Lucas numbers, Journal of Engineering Technology and Applied Sciences, 8(1)(2023), 1–13.
  • Mladenova, C., Robot problems over configurational manifold of vector-parameters and dual vector-parameters, J. Intell. Robot. Syst., 11(1994), 117–133.
  • Özdemir, M., Introduction to hybrid numbers, Adv. Appl. Clifford Algebras, 28(1)(2018), 1–32.
  • Pennestr`ı, E., Stefanelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(3)(2007), 323–344.
  • Poodiack, R.D., LeClair, K.J., Fundamental theorems of algebra for the perplexes, College Math. J., 40(2009), 322–335.
  • Rochon, D., Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea Fasc. Mat., 11(2004), 71–110.
  • Sangwine, S.J., Alfsmann, D., Determination of the biquaternion divisors of zero, including the idempotents and nilpotents, Adv. Appl. Clifford Algebras, 20(2)(2010), 401–410.
  • Sangwine, S.J., Ell, T.A., LeBihan, N., Fundamental representations and algebraic properties of biquaternions or complexified quaternions, Adv. Appl. Clifford Algebras, 21(3)(2011), 607–636.
  • Selig, J.M., Geometric Fundamentals of Robotics, 2nd ed. Springer, New York, 2005.
  • Sobczyk, G., The hyperbolic number plane, The College Mathematics Journal, 26(4)(1995), 268–280.
  • Sporn, H., Pythagorean triples, complex numbers, and perplex numbers, The College Mathematics Journal, 48(2)(2017), 115–122.
  • Tevian, D., The Geometry of the Octonions, Oregon State University, Word Scientific Publishing Company, 2012.
  • Ulrych, S., Relativistic quantum physics with hyperbolic numbers, Phys. Lett. B, 625(2005), 313–323.
  • Veldkamp, G.R., On the use of dual numbers, vectors and matrices in instantaneous kinematics, Mech. and Machine Theory, 11(2)(1976), 141–156.
  • Yaglom, I.M., A simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag Inc. New York, 1979.
There are 38 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Ali Dağdeviren 0000-0003-4887-405X

Ferhat Kuruz 0000-0001-6197-4958

Submission Date November 24, 2024
Acceptance Date April 14, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Dağdeviren, A., & Kuruz, F. (2025). On Dual Type Octonions and Their Properties. Turkish Journal of Mathematics and Computer Science, 17(1), 93-101. https://doi.org/10.47000/tjmcs.1590392
AMA Dağdeviren A, Kuruz F. On Dual Type Octonions and Their Properties. TJMCS. June 2025;17(1):93-101. doi:10.47000/tjmcs.1590392
Chicago Dağdeviren, Ali, and Ferhat Kuruz. “On Dual Type Octonions and Their Properties”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 93-101. https://doi.org/10.47000/tjmcs.1590392.
EndNote Dağdeviren A, Kuruz F (June 1, 2025) On Dual Type Octonions and Their Properties. Turkish Journal of Mathematics and Computer Science 17 1 93–101.
IEEE A. Dağdeviren and F. Kuruz, “On Dual Type Octonions and Their Properties”, TJMCS, vol. 17, no. 1, pp. 93–101, 2025, doi: 10.47000/tjmcs.1590392.
ISNAD Dağdeviren, Ali - Kuruz, Ferhat. “On Dual Type Octonions and Their Properties”. Turkish Journal of Mathematics and Computer Science 17/1 (June2025), 93-101. https://doi.org/10.47000/tjmcs.1590392.
JAMA Dağdeviren A, Kuruz F. On Dual Type Octonions and Their Properties. TJMCS. 2025;17:93–101.
MLA Dağdeviren, Ali and Ferhat Kuruz. “On Dual Type Octonions and Their Properties”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 93-101, doi:10.47000/tjmcs.1590392.
Vancouver Dağdeviren A, Kuruz F. On Dual Type Octonions and Their Properties. TJMCS. 2025;17(1):93-101.