Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 1, 82 - 92, 30.06.2025
https://doi.org/10.47000/tjmcs.1656932

Abstract

References

  • Altunbas¸, M., Generalized Kantowski-Sachs type spacetime metrics and their harmonicity, J. Geom., 113(3)(2022), 1–11.
  • Baird, P., Kamissoko, D., On constructing biharmonic maps and metrics, Ann. Global Anal. Geom., 23(1)(2003), 65–75.
  • Baird, P., Fardoun, A., Ouakkas, S., Conformal and semi-conformal biharmonic maps, Ann. Global Anal. Geom., 34(4)(2008), 403–414.
  • Baird, P.,Wood, J.C., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003.
  • Balmus, A., Biharmonic properties and conformal changes, An. Stiint. Univ. Al.I. Cuza Ias¸i Mat. (N.S.), 50(2)(2004), 367–372.
  • Benkartab, A., Cherif, A.M., New methods of construction for biharmonic maps, Kyungpook Math. J., 59(1)(2019), 135–147.
  • Chen, G., Liu, Y., Wei, J., Nondegeneracy of harmonic maps from R2 to S2, Discrete Contin. Dyn. Syst., 40(6)(2020), 3215–3233.
  • Djaa, N.E.H., Bilen L., Gezer, A., Harmonic maps on the tangent bundle according to the ciconia metric, Hacet. J. Math. Stat., 54(1)(2025), 75–89.
  • Djaa, N.E.H., Zagane, A., Harmonicity of Mus-gradient Metric, Int. J. Maps Math., 5(1)(2022), 61–77.
  • Djaa, N.E.H., Zagane, A., Some results on the geometry of a non-conformal deformation of a metric, Commun. Korean Math. Soc., 37(3)(2022), 865–879.
  • Djaa, N.E., Latti, F., A. Zagane, Proper biharmonic maps on tangent bundle, Commun. Math., 31(1)(2023), 137–154.
  • Eells, J., Lemaire, L., Another report on harmonic maps. Bull. London Math. Soc., 20(5)(1988), 385–524.
  • Eells, J., Sampson, J.H., Harmonic mappings of Riemannian manifolds, Amer.J. Math., 86(1)(1964), 109–160.
  • Gezer, A., Bilen, L., On infinitesimal conformal transformations with respect to the Cheeger-Gromoll metric, An. S¸ t. Univ. Ovidius Constanta, 20(1)(2012), 113–128.
  • Konderak, J.J., On Harmonic cector fields, Publications Mathem`atiques, 36(1)(1992), 217–288.
  • Zagane, A., Djaa, N.E.H., Notes about a harmonicity on the tangent bundle with vertical rescaled metric, Int. Electron. J. Geom., 15(1)(2022), 83–95,
  • Zagane, A., Gezer, A., Vertical Rescaled Cheeger-Gromoll metric and harmonicity on the cotangent bundle, Adv. Stud. Euro-Tbil. Math. J.,15(3)(2022), 11–29.
  • Zagane, A., A study on the semi-conformal deformation of Berger-type metric, Int. J. Maps Math., 6(2)(2023), 99–113.

Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$

Year 2025, Volume: 17 Issue: 1, 82 - 92, 30.06.2025
https://doi.org/10.47000/tjmcs.1656932

Abstract

In this paper, we introduce a new class of metrics on a Riemannian manifold, which is obtained by deforming the metric of this Riemannian manifold into a Cheeger-Gromoll-type metric. We first investigate the Levi-Civita connection for this metric. Then we characterize the Riemannian curvature, the sectional curvature, and the scalar curvature. Finally, we explore a class of harmonic and biharmonic maps.

References

  • Altunbas¸, M., Generalized Kantowski-Sachs type spacetime metrics and their harmonicity, J. Geom., 113(3)(2022), 1–11.
  • Baird, P., Kamissoko, D., On constructing biharmonic maps and metrics, Ann. Global Anal. Geom., 23(1)(2003), 65–75.
  • Baird, P., Fardoun, A., Ouakkas, S., Conformal and semi-conformal biharmonic maps, Ann. Global Anal. Geom., 34(4)(2008), 403–414.
  • Baird, P.,Wood, J.C., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003.
  • Balmus, A., Biharmonic properties and conformal changes, An. Stiint. Univ. Al.I. Cuza Ias¸i Mat. (N.S.), 50(2)(2004), 367–372.
  • Benkartab, A., Cherif, A.M., New methods of construction for biharmonic maps, Kyungpook Math. J., 59(1)(2019), 135–147.
  • Chen, G., Liu, Y., Wei, J., Nondegeneracy of harmonic maps from R2 to S2, Discrete Contin. Dyn. Syst., 40(6)(2020), 3215–3233.
  • Djaa, N.E.H., Bilen L., Gezer, A., Harmonic maps on the tangent bundle according to the ciconia metric, Hacet. J. Math. Stat., 54(1)(2025), 75–89.
  • Djaa, N.E.H., Zagane, A., Harmonicity of Mus-gradient Metric, Int. J. Maps Math., 5(1)(2022), 61–77.
  • Djaa, N.E.H., Zagane, A., Some results on the geometry of a non-conformal deformation of a metric, Commun. Korean Math. Soc., 37(3)(2022), 865–879.
  • Djaa, N.E., Latti, F., A. Zagane, Proper biharmonic maps on tangent bundle, Commun. Math., 31(1)(2023), 137–154.
  • Eells, J., Lemaire, L., Another report on harmonic maps. Bull. London Math. Soc., 20(5)(1988), 385–524.
  • Eells, J., Sampson, J.H., Harmonic mappings of Riemannian manifolds, Amer.J. Math., 86(1)(1964), 109–160.
  • Gezer, A., Bilen, L., On infinitesimal conformal transformations with respect to the Cheeger-Gromoll metric, An. S¸ t. Univ. Ovidius Constanta, 20(1)(2012), 113–128.
  • Konderak, J.J., On Harmonic cector fields, Publications Mathem`atiques, 36(1)(1992), 217–288.
  • Zagane, A., Djaa, N.E.H., Notes about a harmonicity on the tangent bundle with vertical rescaled metric, Int. Electron. J. Geom., 15(1)(2022), 83–95,
  • Zagane, A., Gezer, A., Vertical Rescaled Cheeger-Gromoll metric and harmonicity on the cotangent bundle, Adv. Stud. Euro-Tbil. Math. J.,15(3)(2022), 11–29.
  • Zagane, A., A study on the semi-conformal deformation of Berger-type metric, Int. J. Maps Math., 6(2)(2023), 99–113.
There are 18 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Abderrahım Zagane 0000-0001-9339-3787

Fethi Lattı 0009-0004-3158-5707

Submission Date March 13, 2025
Acceptance Date April 23, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Zagane, A., & Lattı, F. (2025). Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$. Turkish Journal of Mathematics and Computer Science, 17(1), 82-92. https://doi.org/10.47000/tjmcs.1656932
AMA Zagane A, Lattı F. Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$. TJMCS. June 2025;17(1):82-92. doi:10.47000/tjmcs.1656932
Chicago Zagane, Abderrahım, and Fethi Lattı. “Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 82-92. https://doi.org/10.47000/tjmcs.1656932.
EndNote Zagane A, Lattı F (June 1, 2025) Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$. Turkish Journal of Mathematics and Computer Science 17 1 82–92.
IEEE A. Zagane and F. Lattı, “Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$”, TJMCS, vol. 17, no. 1, pp. 82–92, 2025, doi: 10.47000/tjmcs.1656932.
ISNAD Zagane, Abderrahım - Lattı, Fethi. “Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$”. Turkish Journal of Mathematics and Computer Science 17/1 (June2025), 82-92. https://doi.org/10.47000/tjmcs.1656932.
JAMA Zagane A, Lattı F. Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$. TJMCS. 2025;17:82–92.
MLA Zagane, Abderrahım and Fethi Lattı. “Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 82-92, doi:10.47000/tjmcs.1656932.
Vancouver Zagane A, Lattı F. Some Properties Concerning the Cheeger-Gromoll Type Deformation of Metric $g$ on a Riemannian Manifold $(M^{m},g)$. TJMCS. 2025;17(1):82-9.