Research Article
BibTex RIS Cite

Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions

Year 2025, Volume: 17 Issue: 2, 371 - 377, 30.12.2025
https://doi.org/10.47000/tjmcs.1672430

Abstract

In the present paper, we consider the inverse Sturm-Liouville problem with Neumann boundary conditions. We give an algorithm for the reconstruction of the symmetric potential of problem using a special coefficient matrix.

References

  • Aceto, L., Ghelardoni, P., Magherini, C., Boundary value methods for the reconstruction of Sturm–Liouville potentials, App. Math. Comp., 6(2012), 2960–2974.
  • Ambarzumian, V.A., Ueber eine frage der eigenwerttheorie, Z. Phys., (1929), 690–695.
  • Andrew, A.L., Asymptotic correction of Numerov’s eigenvalue estimates with natural boundary conditions, J.Comp.Appl.Math., 125(1-2)(2000), 359–366.
  • Andrew, A.L., Computing Sturm–Liouville potentials from two spectra, Acta Math., 22(2006), 2069–2081.
  • Bondarenko, N.P., Finite-difference approximation of the inverse Sturm–Liouville problem with frozen argument, App. Math. Comp., 413(2022), 126653.
  • Borg, G., Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Math., 78(1946), 1–96.
  • Buterin, S.A., On the reconstruction of a convolution perturbation of the Sturm-Liouville operator from the spectrum, Dif. Equ., 46(1)(2010), 150–154.
  • Fabiano, R.H. , Knobel, R., Lowe, B.D., A finite-difference algorithm for an inverse Sturm-Liouville problem, IMA journal of numerical analysis, 15(1)(1995), 75–88.
  • Freiling, G., Yurko, V.A., Inverse Sturm-Liouville Problems and Their Applications, NOVA Science Publishers, Huntington, 2001.
  • Gao, Q., Cheng, X., Huang, Z., Modified Numerov’s method for inverse Sturm-Liouville problems, Journal of computational and applied mathematics, 253(2013), 181–199.
  • Hald, O.H., The inverse Sturm-Liouville problem and the Rayleigh-Ritz method, Math. Comp., 32(143) (1978), 687–705.
  • Hochstadt, H., Lieberman, B., An inverse Sturm–Liouville problem with mixed given data, SIAM J. App. Math., 34(4)(1978), 676–680.
  • Ignatiev, M., Yurko, V., Numerical methods for solving inverse Sturm–Liouville problems,Results in Math., 52(1)(2008), 63–74.
  • Jiang, X., Li, X., Xu, X., Numerical algorithms for inverse Sturm-Liouville problems, Numerical Algorithms, 89(3)(2022), 1287–1309.
  • Kammanee, A., B¨ockmann, C., Boundary value method for inverse Sturm–Liouville problems, App. Math. Comp., 214(2)(2009), 342–352.
  • Kravchenko, V.V., Direct and Inverse Sturm-Liouville Problems, Birkh¨auser, Cham, 2020.
  • Kravchenko, V.V., Torba, S.M., A direct method for solving inverse Sturm-Liouville problems, J. Diff. Eq., 37(1)(2020), 015015.
  • Kravchenko, V.V. , Spectrum completion and inverse Sturm-Liouville problems, Math. Meth. Appl. Sci., 46(5)(2023), 5821–5835.
  • Levinson, N., The inverse Sturm-Liouville problem, Math. Tidsskr. B., 13(1949), 25–30.
  • Liu, C.S., Li, B., Solving Sturm–Liouville inverse problems by an orthogonalized enhanced boundary function method and a product formula for symmetric potential, Mathematics and Computers in Simulation, 210(2023), 640–660.
  • Liu, C.S., Li, B., The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula, Applications of Mathematics, 69(3)(2024), 355–372.
  • Lowe, B.D., Pilant, M., Rundell, W., The recovery of potentials from finite spectral data, SIAM J. Math. Analysis, 23(2)(1992), 482–504.
  • McLaughlin, J.R., Inverse spectral theory using nodal points as data - a uniqueness result, J. Diff. Eq., 69(73)(1988), 354–362.
  • Neamaty, A., Akbarpoor, S., Yılmaz, E., Solving symmetric inverse Sturm–Liouville problem using Chebyshev polynomials, Mediterranean Journal of Mathematics, 16(2019), 1–17.
  • Perera, U., B¨ockmann, C.,Solutions of Sturm-Liouville problems, Mathematics, 8(11)(2020), 2074.
  • Plum, M. Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method, Zeitschrift f¨ur angewandte Mathematik und Physik ZAMP, 41(2)(1990), 205–226.
  • Röhrl, N., A least-squares functional for solving inverse Sturm–Liouville problems, Inverse Probl. 21(2005), 2009–2017.
  • Rundell, W., Sacks, P.E., Reconstruction techniques for classical inverse Sturm-Liouville problems, Mathematics of Computation, 58(197)(1992), 161–183.
  • Rundell, W., Sacks, P.E., The reconstruction of Sturm-Liouville operators, Inverse problems, 8(3)(1992), 457–482
  • Sacks, P.E., An iterative method for the inverse Dirichlet problem, Mathematics of Computation, 4(4)(1988), 1055.
  • Shahriari, M., Akbarfam, A.J., Teschl, G., Uniqueness for inverse Sturm–Liouville problems with a finite number of transmission conditions, J. Math. Anal. Appl., 395(1)(2012), 19–29.
There are 31 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems, Applied Mathematics (Other)
Journal Section Research Article
Authors

İbrahim Adalar 0000-0002-4224-0972

Submission Date April 9, 2025
Acceptance Date August 25, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Adalar, İ. (2025). Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions. Turkish Journal of Mathematics and Computer Science, 17(2), 371-377. https://doi.org/10.47000/tjmcs.1672430
AMA Adalar İ. Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions. TJMCS. December 2025;17(2):371-377. doi:10.47000/tjmcs.1672430
Chicago Adalar, İbrahim. “Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions”. Turkish Journal of Mathematics and Computer Science 17, no. 2 (December 2025): 371-77. https://doi.org/10.47000/tjmcs.1672430.
EndNote Adalar İ (December 1, 2025) Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions. Turkish Journal of Mathematics and Computer Science 17 2 371–377.
IEEE İ. Adalar, “Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions”, TJMCS, vol. 17, no. 2, pp. 371–377, 2025, doi: 10.47000/tjmcs.1672430.
ISNAD Adalar, İbrahim. “Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions”. Turkish Journal of Mathematics and Computer Science 17/2 (December2025), 371-377. https://doi.org/10.47000/tjmcs.1672430.
JAMA Adalar İ. Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions. TJMCS. 2025;17:371–377.
MLA Adalar, İbrahim. “Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 2, 2025, pp. 371-7, doi:10.47000/tjmcs.1672430.
Vancouver Adalar İ. Solving Symmetric Inverse Sturm-Liouville Problem for Neumann Boundary Conditions. TJMCS. 2025;17(2):371-7.