Research Article
BibTex RIS Cite

On Characterizations of Soft Dirings

Year 2025, Volume: 17 Issue: 2, 512 - 518, 30.12.2025
https://doi.org/10.47000/tjmcs.1716605

Abstract

This paper proposes the notion of soft dirings, created by combining soft set theory with dirings structure, which are an extension of as a generalization of rings. It investigates several properties of soft dirings and includes examples to clarify these concepts. The concept of commutative soft dirings is defined. In addition, a categorical framework for soft dirings and commutative soft dirings is presented. The paper concludes by introducing the concept of soft subdirings and exploring their structural aspects in detail.

References

  • Abbasi, M.Y., Mir, T.R., Khan S.A., Characteristics of Soft Fractional Ideals and its R-multiples of Integral Domains, Palestine Journal of Mathematics, 13(3)(2024), 392–399.
  • Acar, U., Koyuncu, F., Tanay, B., Soft sets and soft rings, Computers and Mathematics with Applications, 59(11)(2010), 3458–3463.
  • Adhikari, M.R., Adhikari A., Groups, Rings and Modules with Applications, Universities Press, 2003.
  • Aktas, H., Cagman, N., Soft sets and soft groups, Inform. Sci., 77(13)(2007), 2726–2735.
  • Atagun, A.O, Sezgin, A., Soft substructures of rings, fields and modules, Computers and Math.with Appl., 61(2011), 592–601.
  • Biyogmam, G.R., Nganou, J.B., Tchamna, S., An introduction to dirings, Asian-European Journal of Mathematics, 16(03)(2023), 2350050.
  • Cagman, N., Engınoglu, S., Soft set theory and uni–int decision making, European Journal of Operational Research, 207(2)(2010), 848–855.
  • Cohn, P.M., Introduction to Ring Theory, Springer Science and Business Media, 2001.
  • Conte, G., Perdon, A.M., Systems over rings: geometric theory and applications, Annual Reviews in Control, 24(2000), 113–124.
  • Feng, F., Jun, Y.B., Zhao, X., Soft semirings, Comput. Math. Appl., 56(2008), 2621–2628.
  • Ghosh, S.K., Mitra, A., Ghosh, A., A novel intuitionistic fuzzy soft set entrenched mammogram segmentation under multigranulation approximation for breast cancer detection in early stages, Expert Systems with Applications, 169(2021), 114329.
  • Kazanci, O., Yilmaz, S., Yamak, S., Soft sets and soft BCH-algebras, Hacet. J. Math. Stat., 39(2010), 205–217.
  • Kelarev, A.V., Ring constructions and applications., World Scientific,9(2002).
  • Khalil, A.M., Li, S.G., Lin, Y., Li, H.X., Ma, S.G., A new expert system in prediction of lung cancer disease based on fuzzy soft sets, Soft Computing, 24(18)(2020), 14179–14207.
  • Maji, P.K., Roy, A.R., Biswas, R., An application of soft sets in a decision making problem, Comput. Math. Appl., 44(2002), 1077–1083.
  • Maji, P.K., Biswas, R., Roy, A.R., Soft set theory, Comput. Math. Appl., 45(4–5)(2003), 555–562.
  • Molodtsov, D.A., Soft set theory-First results, Comput. Math. Appl., 37(4–5)(1999), 19–31.
  • Oguz, G., Icen, I., Gursoy, M.H., Actions of soft groups, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(1)(2019), 1163–1174.
  • Oguz, G., Gursoy, M.H., Icen, I., On soft topological categories, Hacet. J. Math. Stat., 48(2019), 1675–1681.
  • Oguz, G., Icen, I., Gursoy, M.H., A new concept in the soft theory: Soft groupoids, Southeast Asian Bull. Math., 44(4)(2020), 555–565.
  • Oguz, G., Soft topological transformation groups, Mathematics, 8(9)(2020), 1545.
  • Oguz, G., Davvaz, B., Soft topological hyperstructure, Journal of Intelligent and Fuzzy Systems, 40(5)(2021), 8755–8764.
  • Sezgin, A., Atagün, A.O., On operations of soft sets, Computers and mathematics with applications, 61(5)(2011), 1457–1467.
  • Shah, T., Shaheen, S., Soft topological groups and rings, Ann. Fuzzy Math. Inform, 7(5)(2014), 725–743.
  • Sun, Q.M., Zhang, Z.L., Liu, J., Soft sets and soft modules, In Rough Sets and Knowledge Technology: Third International Conference. Chengdu, China, Springer Berlin Heidelberg, 3(2008), 403–409.
  • Tasbozan, H., Icen, I., Bagirmaz, N., Ozcan, A.F., Soft sets and soft topology on nearness approximation spaces, Filomat, 31(13)(2017), 4117–4125.
  • Zahedi Khameneh, A., Kılıc¸man, A., Multi-attribute decision-making based on soft set theory: A systematic review, Soft Computing, 23(2019), 6899–6920.
  • Zou, Y., Xiao, Z., Data analysis approaches of soft sets under incomplete information, Knowledge-Based Systems, 21(8)(2008), 941–945.
There are 28 citations in total.

Details

Primary Language English
Subjects Group Theory and Generalisations, Mathematical Logic, Set Theory, Lattices and Universal Algebra
Journal Section Research Article
Authors

Gülay Oğuz 0000-0003-4302-8401

Submission Date June 10, 2025
Acceptance Date September 11, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Oğuz, G. (2025). On Characterizations of Soft Dirings. Turkish Journal of Mathematics and Computer Science, 17(2), 512-518. https://doi.org/10.47000/tjmcs.1716605
AMA Oğuz G. On Characterizations of Soft Dirings. TJMCS. December 2025;17(2):512-518. doi:10.47000/tjmcs.1716605
Chicago Oğuz, Gülay. “On Characterizations of Soft Dirings”. Turkish Journal of Mathematics and Computer Science 17, no. 2 (December 2025): 512-18. https://doi.org/10.47000/tjmcs.1716605.
EndNote Oğuz G (December 1, 2025) On Characterizations of Soft Dirings. Turkish Journal of Mathematics and Computer Science 17 2 512–518.
IEEE G. Oğuz, “On Characterizations of Soft Dirings”, TJMCS, vol. 17, no. 2, pp. 512–518, 2025, doi: 10.47000/tjmcs.1716605.
ISNAD Oğuz, Gülay. “On Characterizations of Soft Dirings”. Turkish Journal of Mathematics and Computer Science 17/2 (December2025), 512-518. https://doi.org/10.47000/tjmcs.1716605.
JAMA Oğuz G. On Characterizations of Soft Dirings. TJMCS. 2025;17:512–518.
MLA Oğuz, Gülay. “On Characterizations of Soft Dirings”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 2, 2025, pp. 512-8, doi:10.47000/tjmcs.1716605.
Vancouver Oğuz G. On Characterizations of Soft Dirings. TJMCS. 2025;17(2):512-8.