Research Article
BibTex RIS Cite

Nonparametric Density Estimation Using Flexible NURBS Modeling

Year 2025, Volume: 17 Issue: 2, 434 - 440, 30.12.2025
https://doi.org/10.47000/tjmcs.1733086

Abstract

Nonparametric methods for density estimation provide flexible tools for modeling data distributions without assuming a specific parametric form. In this study, we propose a novel approach based on Non-Uniform Rational B-Splines (NURBS) to estimate probability density functions in a fully data-driven manner. The estimator is constructed by optimizing a set of control points and associated weights under constraints that ensure non-negativity and unit integral, guaranteeing that the resulting function is a valid density. Unlike classical polynomial-based estimators, the NURBS framework offers enhanced flexibility by accommodating non-uniform knot vectors and rational weighting, allowing for better adaptation to sharp features and multimodal structures. The performance of the proposed estimator is examined through simulations involving a wide range of distributional shapes, and its practical performance is demonstrated using real-world datasets. Comparative results indicate that the NURBS-based estimator provides competitive or superior accuracy compared to traditional Bernstein and Bézier-based alternatives, especially in complex distributional settings.

References

  • Babu, G.J., Canty, A.J., Chaubey, Y.P., Application of Bernstein polynomials for smooth estimation of a distribution and density function, J. Statist. Plann. Inference, 105(2)(2002), 377–392.
  • Belalia, M., Bouezmarni, T., Leblanc, A., Smooth conditional distribution estimators using Bernstein polynomials, Comput. Stat. Data Anal., 111(2017), 166–182.
  • Erdoğan, M.S., Dişibüyük, Ç., Oruç, Ö.E., An alternative distribution function estimation method using rational Bernstein polynomials, J. Comput. Appl. Math., 353(2019), 232–242.
  • Ghosal, S., Convergence rates for density estimation with Bernstein polynomials, Ann. Statist., 29(5)(2001), 1264–1280.
  • Janosi, A., Steinbrunn,W., Pfisterer, M., & Detrano, R., Heart Disease Dataset, UCI Machine Learning Repository, 1988, https://archive.ics.uci.edu/ml/datasets/heart+disease.
  • Johnson, S.G., The NLopt nonlinear-optimization package, https://github.com/stevengj/nlopt.
  • Leblanc, A., Chung–Smirnov property for Bernstein estimators of distribution functions, J. Nonparametr. Stat., 21(2)(2009), 133–142.
  • Leblanc, A., A bias-reduced approach to density estimation using Bernstein polynomials, J. Nonparametr. Stat., 22(4)(2010), 459–475.
  • Leblanc, A., On estimating distribution functions using Bernstein polynomials, Ann. Inst. Stat. Math., 64(2012), 919–943.
  • Marron, J.S., Wand, M.P., Exact mean integrated squared error, Ann. Statist., 20(2)(1992), 712–736.
  • Marsh, D., Applied Geometry for Computer Graphics and CAD, Springer, 2006.
  • Parzen, E., On estimation of a probability density function and mode, Ann. Math. Statist., 33(3)(1962), 1065–1076.
  • Petrone, S., Wasserman, L., Consistency of Bernstein polynomial posteriors, J. R. Stat. Soc. Ser. B Stat. Methodol., 64(1)(2002), 79–100.
  • R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2025. https://www.R-project.org/.
  • Rosenblatt, M., A central limit theorem and a strong mixing condition, Proc. Natl. Acad. Sci. USA, 42(1)(1956), 43–47.
  • Silverman, B.W., Density Estimation for Statistics and Data Analysis, Springer, New York, 1986.
  • Turnbull, B.C., Ghosh, S.K., Unimodal density estimation using Bernstein polynomials, Comput. Stat. Data Anal., 72(2014), 13–29.
  • Vitale, R.A., A Bernstein Polynomial Approach to Density Function Estimation, in: Statistical Inference and Related Topics, Academic Press, 1975.
  • Wand, M.P., Jones, M.C., Kernel Smoothing, CRC Press, 1994.
  • Xue, L., Wang, J., Distribution function estimation by constrained polynomial spline regression, J. Nonparametr. Stat., 22(4)(2010), 443–457.
There are 20 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Mahmut Sami Erdoğan 0000-0002-0970-1140

Submission Date July 2, 2025
Acceptance Date August 8, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Erdoğan, M. S. (2025). Nonparametric Density Estimation Using Flexible NURBS Modeling. Turkish Journal of Mathematics and Computer Science, 17(2), 434-440. https://doi.org/10.47000/tjmcs.1733086
AMA Erdoğan MS. Nonparametric Density Estimation Using Flexible NURBS Modeling. TJMCS. December 2025;17(2):434-440. doi:10.47000/tjmcs.1733086
Chicago Erdoğan, Mahmut Sami. “Nonparametric Density Estimation Using Flexible NURBS Modeling”. Turkish Journal of Mathematics and Computer Science 17, no. 2 (December 2025): 434-40. https://doi.org/10.47000/tjmcs.1733086.
EndNote Erdoğan MS (December 1, 2025) Nonparametric Density Estimation Using Flexible NURBS Modeling. Turkish Journal of Mathematics and Computer Science 17 2 434–440.
IEEE M. S. Erdoğan, “Nonparametric Density Estimation Using Flexible NURBS Modeling”, TJMCS, vol. 17, no. 2, pp. 434–440, 2025, doi: 10.47000/tjmcs.1733086.
ISNAD Erdoğan, Mahmut Sami. “Nonparametric Density Estimation Using Flexible NURBS Modeling”. Turkish Journal of Mathematics and Computer Science 17/2 (December2025), 434-440. https://doi.org/10.47000/tjmcs.1733086.
JAMA Erdoğan MS. Nonparametric Density Estimation Using Flexible NURBS Modeling. TJMCS. 2025;17:434–440.
MLA Erdoğan, Mahmut Sami. “Nonparametric Density Estimation Using Flexible NURBS Modeling”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 2, 2025, pp. 434-40, doi:10.47000/tjmcs.1733086.
Vancouver Erdoğan MS. Nonparametric Density Estimation Using Flexible NURBS Modeling. TJMCS. 2025;17(2):434-40.