Research Article
BibTex RIS Cite

A New Type of Zero Divisor Graphs of a Lattice, t-Zero Divisor Graphs

Year 2025, Volume: 17 Issue: 2, 562 - 572, 30.12.2025
https://doi.org/10.47000/tjmcs.1767545

Abstract

In this paper, we introduce the t-zero divisor graph $\Gamma_{T}(L)$, which is a generalization of the zero divisor graph of a lattice $\Gamma(L)$, where $t$ is a triangular norm on $L$. We investigate which properties hold in $t$-zero divisor graphs for special $t$-norms while giving some additional properties of the zero divisor graph. Additionally, the cases where the zero divisor graph and the t-zero divisor graph are line graphs are investigated.

References

  • Afkhami, M., Bahrami, S., Khashyarmanesh, K., Shahsavar, F., The annihilating-ideal graph of a lattice, Georgian Math. J., 23(1)(2016), 1–7.
  • Anderson, D.D., Naseer, M., Beck’s coloring of a commutative ring, J. Algebra, 159(2)(1993), 500–514.
  • Anderson, D.F., Livingston, P.S., The zero-divisor graph of a commutative ring, J. Algebra, 217(2)(1999), 434–447.
  • Beck, I., Coloring of commutative rings, J. Algebra, 116(1)(1988), 208–226.
  • Beineke, L.W., Characterizations of derived graphs, J. Combin. Theory, 9(2)(1970), 129–135.
  • De Baets, B., Mesiar, R., Triangular norms on product lattices, Fuzzy Sets Syst., 104(1999), 61–75.
  • Deore, R., Tayade, P., Zero divisor graph of a lattice and its unique ideal, J. Mathematics, 2019(2019), Article ID 9825495.
  • Estaji, E., Khashyarmanesh, K., The zero-divisor graph of a lattice, Results Math., 61(2012), 1–11.
  • Filipov, N.D., Comparability graphs of partially ordered sets of different types, Colloq. Math. Soc. J. Bolyai, 33(1980), 373–380.
  • Harary, F., Graph Theory, Addison-Wesley, Massachusetts, 1969.
  • Kulal, V., Khairnar, A., Masalkar, K., Kadam, L., Weakly zero divisor graph of a lattice, Commun. Math. Appl., 14(3)(2023), 1167.
  • Nimbhokar, S.K., Wasadikar, M.P., Pawar, M.M., Coloring of lattices, Math. Slovaca, 60(4)(2010), 419–434.
  • Tamizh Chelvam, T., Nithya, S., A note on the zero divisor graph of a lattice, Trans. Combin., 3(3)(2014), 51–59.
  • Ulker, A., On the essential element graph of a lattice, Turk. J. Math. Comput. Sci., 14(2)(2022), 248–255.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Logic, Set Theory, Lattices and Universal Algebra
Journal Section Research Article
Authors

Dilek Bayrak Delice 0000-0002-2112-135X

Submission Date August 17, 2025
Acceptance Date October 13, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Bayrak Delice, D. (2025). A New Type of Zero Divisor Graphs of a Lattice, t-Zero Divisor Graphs. Turkish Journal of Mathematics and Computer Science, 17(2), 562-572. https://doi.org/10.47000/tjmcs.1767545
AMA Bayrak Delice D. A New Type of Zero Divisor Graphs of a Lattice, t-Zero Divisor Graphs. TJMCS. December 2025;17(2):562-572. doi:10.47000/tjmcs.1767545
Chicago Bayrak Delice, Dilek. “A New Type of Zero Divisor Graphs of a Lattice, T-Zero Divisor Graphs”. Turkish Journal of Mathematics and Computer Science 17, no. 2 (December 2025): 562-72. https://doi.org/10.47000/tjmcs.1767545.
EndNote Bayrak Delice D (December 1, 2025) A New Type of Zero Divisor Graphs of a Lattice, t-Zero Divisor Graphs. Turkish Journal of Mathematics and Computer Science 17 2 562–572.
IEEE D. Bayrak Delice, “A New Type of Zero Divisor Graphs of a Lattice, t-Zero Divisor Graphs”, TJMCS, vol. 17, no. 2, pp. 562–572, 2025, doi: 10.47000/tjmcs.1767545.
ISNAD Bayrak Delice, Dilek. “A New Type of Zero Divisor Graphs of a Lattice, T-Zero Divisor Graphs”. Turkish Journal of Mathematics and Computer Science 17/2 (December2025), 562-572. https://doi.org/10.47000/tjmcs.1767545.
JAMA Bayrak Delice D. A New Type of Zero Divisor Graphs of a Lattice, t-Zero Divisor Graphs. TJMCS. 2025;17:562–572.
MLA Bayrak Delice, Dilek. “A New Type of Zero Divisor Graphs of a Lattice, T-Zero Divisor Graphs”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 2, 2025, pp. 562-7, doi:10.47000/tjmcs.1767545.
Vancouver Bayrak Delice D. A New Type of Zero Divisor Graphs of a Lattice, t-Zero Divisor Graphs. TJMCS. 2025;17(2):562-7.