Research Article
BibTex RIS Cite
Year 2021, , 19 - 24, 30.06.2021
https://doi.org/10.47000/tjmcs.823766

Abstract

References

  • [1] Abdeljawad T., On conformable fractional calculus, J. Comput. Appl. Math. 279(2015), 57-66.
  • [2] Allahverdiev, B. P., Tuna, H., Yalc¸ınkaya, Y., Conformable fractional Sturm-Liouville equation, Math. Meth. Appl. Sci., 42(10)(2019), 3508- 3526.
  • [3] Baleanu, D., Jarad, F., Ugurlu, E., Singular conformable fractional sequential differential equations with distributional potentials, Quaest. Math. 42(3)(2018), 277-287.
  • [4] Everitt W. N., On the limit-point classification of second-order differential expressions, J. London Math. Soc. 41(1966), 531-534.
  • [5] Everitt W. N., On the limit-circle classification of second order differential expressions, Quart. J. Math. (Oxford) 2(23)(1972), 193-6.
  • [6] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, New York, 1934.
  • [7] Khalil R. M., Al Horani ,Yousef A. and Sababheh M., A new definition of fractional derivative, J. Comput. Appl. Math. 264(2014), 65-70.
  • [8] Krein M. G., On the indeterminate case of the Sturm–Liouville boundary problem in the interval (0;1), Izv. Akad. Nauk SSSR Ser. Mat., 16(4)(1952), 293-324 (in Russian).
  • [9] Levinson N., Criteria for the limit-point case for second order linear differential operators. Pest. Mat. Fys. 74(1949), 17-20.
  • [10] Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equation, Wiley Interscience, New York, 1993.
  • [11] Oldham K. B., Spainer J., The Fractional Calculus, Academic Press, New York, 1974.
  • [12] Podlubny I., 1999, Fractional Differential Equations, Mathematics in Science and Enginering, vol. 198, Academic Press, New York, London, Tokyo and Toronto.
  • [13] Ross B., Fractional Calculus and Its Applications, Springer, New York, 1975.
  • [14] Titchmarsh E. C., Eigenfunction expansions associated with second-order differential equations, Part I (2nd edition, Oxford University Press, 1962).
  • [15] Zhaowen, Z., Huixin, L., Jinming, C., Yanwei, Z., Criteria of limit-point case for conformable fractional Sturm-Liouville operators, Math. Meth. Appl. Sci. 43(2020), 2548–2557.

Limit-point Classification for Singular Conformable Fractional Sturm-Liouville Operators

Year 2021, , 19 - 24, 30.06.2021
https://doi.org/10.47000/tjmcs.823766

Abstract

In this work, we study the following conformable fractional Sturm--Liouville
problem
\[
l[y]=-T_{\alpha }(p(t)T_{\alpha }y(t))+q(t)y(t),
\]
where $t\in \lbrack 0,\infty ),$ the real-valued functions $p$ and $q$
satisfy the following conditions:
\[
\begin{array}{cc}
(i) & q\in L_{\alpha }^{2}[0,\infty ), \\
(ii) & p\ \text{is\ absolutely\ continuous\ on}\ [0,\infty ), \\
(iii) & p(t)>0\ \ \text{for\ all}\ t\in \lbrack 0,\infty ).%
\end{array}%
\]
The conformable fractional Sturm--Liouville problem$\ $is of the limit-point
case if the number of linearly independent $\alpha -$square integrable
solutions of the equation$\ l[y]=\lambda y\ $is less than 2. We give a
criterion for the limit point classification of conformable fractional
Sturm-Liouville operators in singular case.

References

  • [1] Abdeljawad T., On conformable fractional calculus, J. Comput. Appl. Math. 279(2015), 57-66.
  • [2] Allahverdiev, B. P., Tuna, H., Yalc¸ınkaya, Y., Conformable fractional Sturm-Liouville equation, Math. Meth. Appl. Sci., 42(10)(2019), 3508- 3526.
  • [3] Baleanu, D., Jarad, F., Ugurlu, E., Singular conformable fractional sequential differential equations with distributional potentials, Quaest. Math. 42(3)(2018), 277-287.
  • [4] Everitt W. N., On the limit-point classification of second-order differential expressions, J. London Math. Soc. 41(1966), 531-534.
  • [5] Everitt W. N., On the limit-circle classification of second order differential expressions, Quart. J. Math. (Oxford) 2(23)(1972), 193-6.
  • [6] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, New York, 1934.
  • [7] Khalil R. M., Al Horani ,Yousef A. and Sababheh M., A new definition of fractional derivative, J. Comput. Appl. Math. 264(2014), 65-70.
  • [8] Krein M. G., On the indeterminate case of the Sturm–Liouville boundary problem in the interval (0;1), Izv. Akad. Nauk SSSR Ser. Mat., 16(4)(1952), 293-324 (in Russian).
  • [9] Levinson N., Criteria for the limit-point case for second order linear differential operators. Pest. Mat. Fys. 74(1949), 17-20.
  • [10] Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equation, Wiley Interscience, New York, 1993.
  • [11] Oldham K. B., Spainer J., The Fractional Calculus, Academic Press, New York, 1974.
  • [12] Podlubny I., 1999, Fractional Differential Equations, Mathematics in Science and Enginering, vol. 198, Academic Press, New York, London, Tokyo and Toronto.
  • [13] Ross B., Fractional Calculus and Its Applications, Springer, New York, 1975.
  • [14] Titchmarsh E. C., Eigenfunction expansions associated with second-order differential equations, Part I (2nd edition, Oxford University Press, 1962).
  • [15] Zhaowen, Z., Huixin, L., Jinming, C., Yanwei, Z., Criteria of limit-point case for conformable fractional Sturm-Liouville operators, Math. Meth. Appl. Sci. 43(2020), 2548–2557.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Yüksel Yalçınkaya 0000-0002-1633-8343

Bilender Paşaoğlu 0000-0002-9315-4652

Hüseyin Tuna 0000-0003-2483-1493

Publication Date June 30, 2021
Published in Issue Year 2021

Cite

APA Yalçınkaya, Y., Paşaoğlu, B., & Tuna, H. (2021). Limit-point Classification for Singular Conformable Fractional Sturm-Liouville Operators. Turkish Journal of Mathematics and Computer Science, 13(1), 19-24. https://doi.org/10.47000/tjmcs.823766
AMA Yalçınkaya Y, Paşaoğlu B, Tuna H. Limit-point Classification for Singular Conformable Fractional Sturm-Liouville Operators. TJMCS. June 2021;13(1):19-24. doi:10.47000/tjmcs.823766
Chicago Yalçınkaya, Yüksel, Bilender Paşaoğlu, and Hüseyin Tuna. “Limit-Point Classification for Singular Conformable Fractional Sturm-Liouville Operators”. Turkish Journal of Mathematics and Computer Science 13, no. 1 (June 2021): 19-24. https://doi.org/10.47000/tjmcs.823766.
EndNote Yalçınkaya Y, Paşaoğlu B, Tuna H (June 1, 2021) Limit-point Classification for Singular Conformable Fractional Sturm-Liouville Operators. Turkish Journal of Mathematics and Computer Science 13 1 19–24.
IEEE Y. Yalçınkaya, B. Paşaoğlu, and H. Tuna, “Limit-point Classification for Singular Conformable Fractional Sturm-Liouville Operators”, TJMCS, vol. 13, no. 1, pp. 19–24, 2021, doi: 10.47000/tjmcs.823766.
ISNAD Yalçınkaya, Yüksel et al. “Limit-Point Classification for Singular Conformable Fractional Sturm-Liouville Operators”. Turkish Journal of Mathematics and Computer Science 13/1 (June 2021), 19-24. https://doi.org/10.47000/tjmcs.823766.
JAMA Yalçınkaya Y, Paşaoğlu B, Tuna H. Limit-point Classification for Singular Conformable Fractional Sturm-Liouville Operators. TJMCS. 2021;13:19–24.
MLA Yalçınkaya, Yüksel et al. “Limit-Point Classification for Singular Conformable Fractional Sturm-Liouville Operators”. Turkish Journal of Mathematics and Computer Science, vol. 13, no. 1, 2021, pp. 19-24, doi:10.47000/tjmcs.823766.
Vancouver Yalçınkaya Y, Paşaoğlu B, Tuna H. Limit-point Classification for Singular Conformable Fractional Sturm-Liouville Operators. TJMCS. 2021;13(1):19-24.