Let $\mathcal{L}$ be a bounded lattice. The essential element graph of $\mathcal{L}$ is a simple undirected graph $\varepsilon_{\mathcal{L}}$ such that the elements $x,y$ of $\mathcal{L}$ form an edge in $\varepsilon_{\mathcal{L}}$, whenever $x \vee y $ is an essential element of $\mathcal{L}$. In this paper, we study properties of the essential elements of lattices and essential element graphs. We study the lattices whose zero-divisor graphs and incomparability graphs are isomorphic to its essential element graphs. Moreover, the line essential element graphs are investigated.
| Primary Language | English |
|---|---|
| Subjects | Mathematical Sciences |
| Journal Section | Research Article |
| Authors | |
| Publication Date | December 30, 2022 |
| Published in Issue | Year 2022 Volume: 14 Issue: 2 |