Research Article
BibTex RIS Cite

On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators

Year 2016, Volume: 5 , 19 - 31, 30.12.2016

Abstract

In this paper, an application of the local fractional decomposition method (LFDM) is analyzed to search for an approximate analytical solution of nonlinear fractional Klein-Gordon equation. The fractional derivatives are described in Jumarie’s modified Riemann-Liouville sense. A new application of the local fractional decomposition method (LFDM) is extended to derive the approximate solutions in series form for this model problem. Solutions have been plotted for di erent values of the fractional order. It is concluded that the solutions for nonlinear partial equations with Riemann- Liouville derivative obtained with LFDM are useful, reliable and efficient.

References

  • Adomian, G., Solving Frontier Problems of Physics: The Decomposition method, Kluwer Academic Publishers, Boston, 1994. 1
  • Adomian, G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135(1998), 501–544. 1
  • Ahmad, J., Mohyud-din, S.T., Solving wave and di usion equations on Cantor sets, Proc. Pakistan Acad. Sci., 52(2015), 71–77. 1, 2
  • Ahmad, J., Mohyud-Din, S.T., Srivastava, H.M., Yang, X.J., Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators, Waves Wavelets Fractals Adv. Anal., 1(2015), 22–26. 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2, 3, 4.1, 4.2, 4.3
  • Babakhani, A., Daftardar, V.G., On calculus of local fractional derivatives, Journal of Mathematical Analysis and Applications, 270(2002), 66–79. 1
  • Barone, A., Esposito, F., Magee, C.J., Scott, A.C., Theory and applications of the sine-Gordon equation, Riv. Nuovo Cim., 1(1971), 227–261. 1
  • Bonilla, B., Trujillo, J.J., Rivero, M., Fractional order continuity and some properties about integrability and di erentiability of Real functions, J. Math. Anal. Appl., 231(1999), 205–212. 1
  • Carpinteri, A., Chiaia, B., Cornetti, P., Static-kinematic duality and the principle of virtual work in the mechanics of fractal media, Comput. Methods Appl. Mech. Engrg, 191(2001), 3–19. 1
  • Carpinteri, A., Chiaia, B., Cornetti, P., A Fractal theory for the mechanics of elastic materials, Materials Science and Engineering A, 365(2004), 235–240. 1
  • Chen, W., Sun, H., Zhang, X., Korosak, D., Anomalous di usion modeling by fractal and fractional derivatives, Computers and Mathematics with Applications, 59(2010), 1754–1758. 1
  • Dehghan, M., Manafian, J., Saadatmandi, A., Solving nonlinear fractional partial di erential equations using the homotopy analysis method, Numer. Met. for Partial Di . Equ., 26(2010), 448–479. 1
  • Dehghan, M., Shakeri, F. Solution of an integro-di erential equation arising in oscillating magnetic fields using He’s homotopy perturbation method, Prog. Electromagn. Res., 78(2008), 361–376. 2, 2.5, 2.6, 2
  • El-Sayed, S., The decomposition method for studying the Klein-Gordon equation, Chaos Solitons Fractals, 18(2003), 1025–1030. 1
  • El-Shahed, M., Application of He’s homotopy perturbation method to Volterra’s integro-di erential equation, Int. J. Nonlinear Sci. Numer. Simul., 6(2005), 163–168. 1
  • Faraz, N., Khan, Y., Jafari, H., Yildirim, A., Madani,M., Fractional variational iteration method via modified Riemann-Liouville derivative, J. King. Saud. Univ. Science, 23(2011), 413–417. 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2
  • Ganji, Z.Z., Ganji, D.D., Jafari, H., Rostamian, M., Application of the homotopy perturbation method to coupled system of partial di erential equations with time fractional derivatives, Topol. Methods Nonlinear Anal., 31(2008), 341–348. 1
  • Golmankhaneh, A.D., Fazlollahi, V., Baleanu, D., Newtonian mechanics on fractals subset of real-line, Romanian Reports in Physics, 65(2013), 84–93. 1, 2
  • Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D., On nonlinear fractional Klein-Gordon equation, Signal Processing, 91(2011), 446–451. 1, 3, 4.1, 4, 4.2, 4, 4.3
  • He, J.H., Variational iteration method for delay di erential equations, Commun. Nonlinear Sci. Numer. Simul., 2(1997), 235–236. 1
  • He, J.H., Variational iteration method- a kind of non-linear analytical technique: Some examples, Int. J. Nonlinear Mech., 34(1999), 699–708. 1
  • He, J.H., Some applications of nonlinear fractional di erential equations and their approximations, Bull. Sci. Technol., 15(1999), 86–90. 1
  • He, J.H., Variational iteration method for autonomous ordinary di erential systems, Appl. Math. Comput., 114(2000), 115–123. 1
  • He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation, 135(2003), 73–79. 1
  • Jumarie, G., Stochastic di erential equations with fractional Brownian motion input, Int. J. Syst. Sci., 6(1993), 1113–1132. 1
  • Jumarie, G., On the solution of the stochastic di erential equation of exponential growth driven by fractional Brownian motion, Applied Mathematics Letters, 18(2005), 817–826. 1
  • Jumarie, G., New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Model., 44(2006), 231–254. 1
  • Jumarie, G., Laplace’s transform of fractional order via the Mittag-Leer function and modified Riemann-Liouville derivative, Applied Mathematics Letters, 22(2009), 1659–1664. 1
  • Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouvillie derivative for nondi erentiable functions, Applied Mathematics Letters, 22(2009), 378–385. 1
  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Di erential Equations, Elsevier, Amsterdam, 2006. 1
  • Kumar, S., Kumar, D., Abbasbandy, S., Rashidi, M.M., Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method, Ain shams Engineering Journal, 5(2016), 569–574. 2, 2.5, 2.6, 2
  • Kurulay, M., Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method, Advances in Di erence Equations, 1(2012), 1–8. 1
  • Merdan, M., A numeric-analytic method for time-fractional Swift-Hohenberg (S-H) equation with modified Riemann-Liouville derivative, Applied Mathematical Modelling, 37(2013), 4224–4231. 1
  • Merdan, M., On the solutions of nonlinear fractional Klein-Gordon equation with modified Riemann-Liouville derivative, Applied Mathematics and Computation, 242(2014), 877–888. 1, 3, 4.1, 4, 4.2, 4.2, 4, 4.3, 4.3
  • Odibat, Z., Momani, S.A., Numerical solution of sine-Gordon equation by variational iteration method, Phys. Lett. A, 370(2007), 437–440. 1
  • Sarwar, S., Rashidi, M.M. Approximate solution of two-term fractional-order di usion, wave-di usion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method, Waves in Random and Complex Media, 26(2016), 365–381. 2, 2.5, 2.6, 2
  • Siddiqui, A. M., Mahmood, R., Ghori, Q. K., Thin film flow of a third grade fluid on a moving belt by He’s homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 7(2006), 7–14. 1
  • Wazwaz, A.M., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111(2000), 53–59. 1
  • Wazwaz, A.M., The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167(2005), 1196. 1
  • Yang, X.J., Local Fractional Functional Analysis and its Applications, Asian Academic Publisher, Hong Kong, PRC, 2011. 1, 2.1, 2.2, 2.3, 2.4, 2.6, 2
  • Yang, X.J., Local Fractional Integral Transforms, Progress in Nonlinear Science, 4(2011), 1–225. 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2
  • Yang, X.J., Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, USA, 2012. 1
  • Yang, Y.J., Baleanu, D., Yang, X.J., A local fractional variational iteration method for Laplace equation within local fractional operators, Abstract and Applied Analysis (2013), Article ID 202650, 6 pages. 1, 2
  • Yang, X.J., Srivastava, H.M., He, J.H., Baleanu, D., Cantor-type cylindrical-coordinate method for di erential equations with local fractional derivatives, Physics Letters A, 377(2013), 1696–1700. 1, 2
  • Yang, X.J., Zhang, Y. A new successive approximation to nonhomogeneous local fractional Volterra equation, Advances in Information Technology and Management, 1(2012), 138–141. 1
  • Yang, X.J., Zhang, F.R. Local fractional variational iteration method and its algorithms, Advances in Computational Mathematics and its Applications, 1(2012), 139–145. 1, 2
  • Yang, X.J., Zhang, Y.D., A New Adomian Decomposition Procedure Scheme for Solving Local Fractional Volterra Integral Equation, Advances in Information Technology and Management, 1(2012), 158–161. 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2
  • Yang, A.M., Zhang, Y.Z., Cattani, C., Xie, G.N., Rashidi, M.M., Zhou, Y.J., Yang, X.J., Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets, Abstract and Applied Analysis, (2014), Article ID 372741, 6 pages. 1
  • Yusufoglu, E., The variational iteration method for studying the Klein-Gordon equation, Appl. Math. Lett., 21(2008), 669-674. 1
Year 2016, Volume: 5 , 19 - 31, 30.12.2016

Abstract

References

  • Adomian, G., Solving Frontier Problems of Physics: The Decomposition method, Kluwer Academic Publishers, Boston, 1994. 1
  • Adomian, G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135(1998), 501–544. 1
  • Ahmad, J., Mohyud-din, S.T., Solving wave and di usion equations on Cantor sets, Proc. Pakistan Acad. Sci., 52(2015), 71–77. 1, 2
  • Ahmad, J., Mohyud-Din, S.T., Srivastava, H.M., Yang, X.J., Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators, Waves Wavelets Fractals Adv. Anal., 1(2015), 22–26. 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2, 3, 4.1, 4.2, 4.3
  • Babakhani, A., Daftardar, V.G., On calculus of local fractional derivatives, Journal of Mathematical Analysis and Applications, 270(2002), 66–79. 1
  • Barone, A., Esposito, F., Magee, C.J., Scott, A.C., Theory and applications of the sine-Gordon equation, Riv. Nuovo Cim., 1(1971), 227–261. 1
  • Bonilla, B., Trujillo, J.J., Rivero, M., Fractional order continuity and some properties about integrability and di erentiability of Real functions, J. Math. Anal. Appl., 231(1999), 205–212. 1
  • Carpinteri, A., Chiaia, B., Cornetti, P., Static-kinematic duality and the principle of virtual work in the mechanics of fractal media, Comput. Methods Appl. Mech. Engrg, 191(2001), 3–19. 1
  • Carpinteri, A., Chiaia, B., Cornetti, P., A Fractal theory for the mechanics of elastic materials, Materials Science and Engineering A, 365(2004), 235–240. 1
  • Chen, W., Sun, H., Zhang, X., Korosak, D., Anomalous di usion modeling by fractal and fractional derivatives, Computers and Mathematics with Applications, 59(2010), 1754–1758. 1
  • Dehghan, M., Manafian, J., Saadatmandi, A., Solving nonlinear fractional partial di erential equations using the homotopy analysis method, Numer. Met. for Partial Di . Equ., 26(2010), 448–479. 1
  • Dehghan, M., Shakeri, F. Solution of an integro-di erential equation arising in oscillating magnetic fields using He’s homotopy perturbation method, Prog. Electromagn. Res., 78(2008), 361–376. 2, 2.5, 2.6, 2
  • El-Sayed, S., The decomposition method for studying the Klein-Gordon equation, Chaos Solitons Fractals, 18(2003), 1025–1030. 1
  • El-Shahed, M., Application of He’s homotopy perturbation method to Volterra’s integro-di erential equation, Int. J. Nonlinear Sci. Numer. Simul., 6(2005), 163–168. 1
  • Faraz, N., Khan, Y., Jafari, H., Yildirim, A., Madani,M., Fractional variational iteration method via modified Riemann-Liouville derivative, J. King. Saud. Univ. Science, 23(2011), 413–417. 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2
  • Ganji, Z.Z., Ganji, D.D., Jafari, H., Rostamian, M., Application of the homotopy perturbation method to coupled system of partial di erential equations with time fractional derivatives, Topol. Methods Nonlinear Anal., 31(2008), 341–348. 1
  • Golmankhaneh, A.D., Fazlollahi, V., Baleanu, D., Newtonian mechanics on fractals subset of real-line, Romanian Reports in Physics, 65(2013), 84–93. 1, 2
  • Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D., On nonlinear fractional Klein-Gordon equation, Signal Processing, 91(2011), 446–451. 1, 3, 4.1, 4, 4.2, 4, 4.3
  • He, J.H., Variational iteration method for delay di erential equations, Commun. Nonlinear Sci. Numer. Simul., 2(1997), 235–236. 1
  • He, J.H., Variational iteration method- a kind of non-linear analytical technique: Some examples, Int. J. Nonlinear Mech., 34(1999), 699–708. 1
  • He, J.H., Some applications of nonlinear fractional di erential equations and their approximations, Bull. Sci. Technol., 15(1999), 86–90. 1
  • He, J.H., Variational iteration method for autonomous ordinary di erential systems, Appl. Math. Comput., 114(2000), 115–123. 1
  • He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation, 135(2003), 73–79. 1
  • Jumarie, G., Stochastic di erential equations with fractional Brownian motion input, Int. J. Syst. Sci., 6(1993), 1113–1132. 1
  • Jumarie, G., On the solution of the stochastic di erential equation of exponential growth driven by fractional Brownian motion, Applied Mathematics Letters, 18(2005), 817–826. 1
  • Jumarie, G., New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Model., 44(2006), 231–254. 1
  • Jumarie, G., Laplace’s transform of fractional order via the Mittag-Leer function and modified Riemann-Liouville derivative, Applied Mathematics Letters, 22(2009), 1659–1664. 1
  • Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouvillie derivative for nondi erentiable functions, Applied Mathematics Letters, 22(2009), 378–385. 1
  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Di erential Equations, Elsevier, Amsterdam, 2006. 1
  • Kumar, S., Kumar, D., Abbasbandy, S., Rashidi, M.M., Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method, Ain shams Engineering Journal, 5(2016), 569–574. 2, 2.5, 2.6, 2
  • Kurulay, M., Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method, Advances in Di erence Equations, 1(2012), 1–8. 1
  • Merdan, M., A numeric-analytic method for time-fractional Swift-Hohenberg (S-H) equation with modified Riemann-Liouville derivative, Applied Mathematical Modelling, 37(2013), 4224–4231. 1
  • Merdan, M., On the solutions of nonlinear fractional Klein-Gordon equation with modified Riemann-Liouville derivative, Applied Mathematics and Computation, 242(2014), 877–888. 1, 3, 4.1, 4, 4.2, 4.2, 4, 4.3, 4.3
  • Odibat, Z., Momani, S.A., Numerical solution of sine-Gordon equation by variational iteration method, Phys. Lett. A, 370(2007), 437–440. 1
  • Sarwar, S., Rashidi, M.M. Approximate solution of two-term fractional-order di usion, wave-di usion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method, Waves in Random and Complex Media, 26(2016), 365–381. 2, 2.5, 2.6, 2
  • Siddiqui, A. M., Mahmood, R., Ghori, Q. K., Thin film flow of a third grade fluid on a moving belt by He’s homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 7(2006), 7–14. 1
  • Wazwaz, A.M., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111(2000), 53–59. 1
  • Wazwaz, A.M., The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167(2005), 1196. 1
  • Yang, X.J., Local Fractional Functional Analysis and its Applications, Asian Academic Publisher, Hong Kong, PRC, 2011. 1, 2.1, 2.2, 2.3, 2.4, 2.6, 2
  • Yang, X.J., Local Fractional Integral Transforms, Progress in Nonlinear Science, 4(2011), 1–225. 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2
  • Yang, X.J., Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, USA, 2012. 1
  • Yang, Y.J., Baleanu, D., Yang, X.J., A local fractional variational iteration method for Laplace equation within local fractional operators, Abstract and Applied Analysis (2013), Article ID 202650, 6 pages. 1, 2
  • Yang, X.J., Srivastava, H.M., He, J.H., Baleanu, D., Cantor-type cylindrical-coordinate method for di erential equations with local fractional derivatives, Physics Letters A, 377(2013), 1696–1700. 1, 2
  • Yang, X.J., Zhang, Y. A new successive approximation to nonhomogeneous local fractional Volterra equation, Advances in Information Technology and Management, 1(2012), 138–141. 1
  • Yang, X.J., Zhang, F.R. Local fractional variational iteration method and its algorithms, Advances in Computational Mathematics and its Applications, 1(2012), 139–145. 1, 2
  • Yang, X.J., Zhang, Y.D., A New Adomian Decomposition Procedure Scheme for Solving Local Fractional Volterra Integral Equation, Advances in Information Technology and Management, 1(2012), 158–161. 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2
  • Yang, A.M., Zhang, Y.Z., Cattani, C., Xie, G.N., Rashidi, M.M., Zhou, Y.J., Yang, X.J., Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets, Abstract and Applied Analysis, (2014), Article ID 372741, 6 pages. 1
  • Yusufoglu, E., The variational iteration method for studying the Klein-Gordon equation, Appl. Math. Lett., 21(2008), 669-674. 1
There are 48 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Mehmet Merdan

Pınar Oral This is me

Publication Date December 30, 2016
Published in Issue Year 2016 Volume: 5

Cite

APA Merdan, M., & Oral, P. (2016). On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators. Turkish Journal of Mathematics and Computer Science, 5, 19-31.
AMA Merdan M, Oral P. On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators. TJMCS. December 2016;5:19-31.
Chicago Merdan, Mehmet, and Pınar Oral. “On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators”. Turkish Journal of Mathematics and Computer Science 5, December (December 2016): 19-31.
EndNote Merdan M, Oral P (December 1, 2016) On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators. Turkish Journal of Mathematics and Computer Science 5 19–31.
IEEE M. Merdan and P. Oral, “On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators”, TJMCS, vol. 5, pp. 19–31, 2016.
ISNAD Merdan, Mehmet - Oral, Pınar. “On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators”. Turkish Journal of Mathematics and Computer Science 5 (December 2016), 19-31.
JAMA Merdan M, Oral P. On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators. TJMCS. 2016;5:19–31.
MLA Merdan, Mehmet and Pınar Oral. “On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators”. Turkish Journal of Mathematics and Computer Science, vol. 5, 2016, pp. 19-31.
Vancouver Merdan M, Oral P. On The Solutions of Nonlinear Fractional Klein-Gordon Equation by Means of Local Fractional Derivative Operators. TJMCS. 2016;5:19-31.