Research Article
BibTex RIS Cite

Primes of the Form 4m + 1

Year 2017, Volume: 7, 16 - 20, 19.12.2017

Abstract

In this paper a new equation related to the sums of the squares of the first n k-Fibonacci numbers has
been found. From this equation, the problem of existing infinitely many primes exist p such that p =1 (mod4) of
elemantary number theory is obtained.

References

  • Bolat, C., Köse, H., On the Properties of k-Fibonacci Numbers, Int. J. Contemp. Math. Sciences, 5, (2010), 1097-1105.
  • Hoggat, V., Long, C., Divisibilty Properties of Generalized Fibonacci Polynomials, Fibonacci Quart. 12, 10M05, (1974), 113-120.
  • Falcon, S., On the k-Lucas numbers, Int. J. Contemp. Math. Sci. 6, (2011), 21-24.
  • Kalman, D., Mena, R., The Fibonacci Numbers-Exposed, Math. Mag. 76, no. 3, (2003), 167-181.
  • Kilic, E., Sums of the squares of terms of sequence fUng, Proc. Indian Acad. Sci. (Math. Sci.) 118, (2008), 27-41.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley, 2001.
  • Ozgur, N. Y., Kaymak, O. O., On determination of k-Fibonacci and k-Lucas numbers, Math. Sci. Appl. E-notes, 3(2015), 20-26.
  • Robbins, N., On Fibonacci Numbers and Primes of the form 4k + 1, The Fibonacci Quarterly 32, (1994), 15-16.
Year 2017, Volume: 7, 16 - 20, 19.12.2017

Abstract

References

  • Bolat, C., Köse, H., On the Properties of k-Fibonacci Numbers, Int. J. Contemp. Math. Sciences, 5, (2010), 1097-1105.
  • Hoggat, V., Long, C., Divisibilty Properties of Generalized Fibonacci Polynomials, Fibonacci Quart. 12, 10M05, (1974), 113-120.
  • Falcon, S., On the k-Lucas numbers, Int. J. Contemp. Math. Sci. 6, (2011), 21-24.
  • Kalman, D., Mena, R., The Fibonacci Numbers-Exposed, Math. Mag. 76, no. 3, (2003), 167-181.
  • Kilic, E., Sums of the squares of terms of sequence fUng, Proc. Indian Acad. Sci. (Math. Sci.) 118, (2008), 27-41.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley, 2001.
  • Ozgur, N. Y., Kaymak, O. O., On determination of k-Fibonacci and k-Lucas numbers, Math. Sci. Appl. E-notes, 3(2015), 20-26.
  • Robbins, N., On Fibonacci Numbers and Primes of the form 4k + 1, The Fibonacci Quarterly 32, (1994), 15-16.
There are 8 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Öznur Öztunç Kaymak This is me 0000-0003-3832-9947

Publication Date December 19, 2017
Published in Issue Year 2017 Volume: 7

Cite

APA Öztunç Kaymak, Ö. (2017). Primes of the Form 4m + 1. Turkish Journal of Mathematics and Computer Science, 7, 16-20.
AMA Öztunç Kaymak Ö. Primes of the Form 4m + 1. TJMCS. December 2017;7:16-20.
Chicago Öztunç Kaymak, Öznur. “Primes of the Form 4m + 1”. Turkish Journal of Mathematics and Computer Science 7, December (December 2017): 16-20.
EndNote Öztunç Kaymak Ö (December 1, 2017) Primes of the Form 4m + 1. Turkish Journal of Mathematics and Computer Science 7 16–20.
IEEE Ö. Öztunç Kaymak, “Primes of the Form 4m + 1”, TJMCS, vol. 7, pp. 16–20, 2017.
ISNAD Öztunç Kaymak, Öznur. “Primes of the Form 4m + 1”. Turkish Journal of Mathematics and Computer Science 7 (December 2017), 16-20.
JAMA Öztunç Kaymak Ö. Primes of the Form 4m + 1. TJMCS. 2017;7:16–20.
MLA Öztunç Kaymak, Öznur. “Primes of the Form 4m + 1”. Turkish Journal of Mathematics and Computer Science, vol. 7, 2017, pp. 16-20.
Vancouver Öztunç Kaymak Ö. Primes of the Form 4m + 1. TJMCS. 2017;7:16-20.