Research Article
BibTex RIS Cite

Core Theorems in The Generalized Statistical Sense

Year 2018, Volume: 8, 16 - 21, 30.06.2018

Abstract

The main purpose of the paper is to give some results concerning with the generalized statistical core of a bounded sequence via $\mathfrak{B}$-statistical convergence where $\mathfrak{B}=(B_{i})$ is a sequence of infinite matrices. We characterize the matrix class $(st_{\mathfrak{B}}\cap X,Y)$ for certain sequence spaces $X$ and $Y$. Here $st_{\mathfrak{B}}$ is the set of all $\mathfrak{B}$-statistically convergent sequences. Finally we answer the multipliers and factorization problem for $\mathfrak{B}$-statistically convergent sequences.

References

  • Bell, H. T., Order summability and almost convergence. Proc. Amer. Math. Soc. 38 (1973), 548-552.
  • Connor, J., Demirci, K., Orhan, C., Multipliers and factorization for bounded statistically convergence sequences. Analysis (Munich) 22 (2002), 321-333.
  • Demirci, K., $A$-statistical core of a sequence. Demonstratio Math. 33 (2000), 343-353.
  • Demirci, K., I-limit superior and limit inferior. Math. Commun. 6 (2001), 165-172.
  • Dirik, F., Demirci, K., B-statistical approximation for periodic functions. Studia Sci. Math. Hungar., 47 (2009), 321-332.
  • Dirik, F., Demirci, K., Korovkin type approximation theorems in B-statistical sense. Math. Comput. Modelling 49 (2009), 2037-2044.
  • Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior. Proc. Amer. Math. Soc. 125 (1997), 3625-3631.
  • Khan, M. K., Orhan, C., Matrix characterization of A-statistical convergence. J. Math. Anal. Appl. 335 (2007), 406-417.
  • Kolk, E., Matrix summability of statistically convergent sequences. Analysis 13 (1993), 77-83.
  • Kolk, E., Inclusion relations between the statistical convergence and strong summability. Acta et Comm. Univ. Tartu. Math. 2 (1998), 39-54.
  • Maddox, I. J., Some analogues of Knopp's core theorem. Internat. J. Math. and Math. Sci. 2 (1979), 605-614.
  • Mursaleen, M., Edely, O. H. H., Generalized statistical convergence. Information Sciences 162 (2004), 287-294.
  • Orhan, C., Sublinear functionals and Knopp's core theorem. Internat. J. Math. and Math. Sci. 13 (1990), 461-468.
  • Orhan, S., Dirik, F., Strong and A-statistical comparisons for double sequences and multipliers, Studia Universitatis Babes¸-Bolyai Mathematica, 58(2013), 213–223.
  • Özgüç, I. S., Yurdakadim, T., On quasi statistical convergence. Commun. Fac. Sci. Univ. Ank. Series A1 61 (2012), 11-17.
  • Shcherbakov, A. A., Kernels of sequences of complex numbers and their regular transformations. Math. Notes 22 (1977), 948-953.
Year 2018, Volume: 8, 16 - 21, 30.06.2018

Abstract

References

  • Bell, H. T., Order summability and almost convergence. Proc. Amer. Math. Soc. 38 (1973), 548-552.
  • Connor, J., Demirci, K., Orhan, C., Multipliers and factorization for bounded statistically convergence sequences. Analysis (Munich) 22 (2002), 321-333.
  • Demirci, K., $A$-statistical core of a sequence. Demonstratio Math. 33 (2000), 343-353.
  • Demirci, K., I-limit superior and limit inferior. Math. Commun. 6 (2001), 165-172.
  • Dirik, F., Demirci, K., B-statistical approximation for periodic functions. Studia Sci. Math. Hungar., 47 (2009), 321-332.
  • Dirik, F., Demirci, K., Korovkin type approximation theorems in B-statistical sense. Math. Comput. Modelling 49 (2009), 2037-2044.
  • Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior. Proc. Amer. Math. Soc. 125 (1997), 3625-3631.
  • Khan, M. K., Orhan, C., Matrix characterization of A-statistical convergence. J. Math. Anal. Appl. 335 (2007), 406-417.
  • Kolk, E., Matrix summability of statistically convergent sequences. Analysis 13 (1993), 77-83.
  • Kolk, E., Inclusion relations between the statistical convergence and strong summability. Acta et Comm. Univ. Tartu. Math. 2 (1998), 39-54.
  • Maddox, I. J., Some analogues of Knopp's core theorem. Internat. J. Math. and Math. Sci. 2 (1979), 605-614.
  • Mursaleen, M., Edely, O. H. H., Generalized statistical convergence. Information Sciences 162 (2004), 287-294.
  • Orhan, C., Sublinear functionals and Knopp's core theorem. Internat. J. Math. and Math. Sci. 13 (1990), 461-468.
  • Orhan, S., Dirik, F., Strong and A-statistical comparisons for double sequences and multipliers, Studia Universitatis Babes¸-Bolyai Mathematica, 58(2013), 213–223.
  • Özgüç, I. S., Yurdakadim, T., On quasi statistical convergence. Commun. Fac. Sci. Univ. Ank. Series A1 61 (2012), 11-17.
  • Shcherbakov, A. A., Kernels of sequences of complex numbers and their regular transformations. Math. Notes 22 (1977), 948-953.
There are 16 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Emre Taş

Tugba Yurdakadim

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 8

Cite

APA Taş, E., & Yurdakadim, T. (2018). Core Theorems in The Generalized Statistical Sense. Turkish Journal of Mathematics and Computer Science, 8, 16-21.
AMA Taş E, Yurdakadim T. Core Theorems in The Generalized Statistical Sense. TJMCS. June 2018;8:16-21.
Chicago Taş, Emre, and Tugba Yurdakadim. “Core Theorems in The Generalized Statistical Sense”. Turkish Journal of Mathematics and Computer Science 8, June (June 2018): 16-21.
EndNote Taş E, Yurdakadim T (June 1, 2018) Core Theorems in The Generalized Statistical Sense. Turkish Journal of Mathematics and Computer Science 8 16–21.
IEEE E. Taş and T. Yurdakadim, “Core Theorems in The Generalized Statistical Sense”, TJMCS, vol. 8, pp. 16–21, 2018.
ISNAD Taş, Emre - Yurdakadim, Tugba. “Core Theorems in The Generalized Statistical Sense”. Turkish Journal of Mathematics and Computer Science 8 (June 2018), 16-21.
JAMA Taş E, Yurdakadim T. Core Theorems in The Generalized Statistical Sense. TJMCS. 2018;8:16–21.
MLA Taş, Emre and Tugba Yurdakadim. “Core Theorems in The Generalized Statistical Sense”. Turkish Journal of Mathematics and Computer Science, vol. 8, 2018, pp. 16-21.
Vancouver Taş E, Yurdakadim T. Core Theorems in The Generalized Statistical Sense. TJMCS. 2018;8:16-21.