Conference Paper
BibTex RIS Cite

Local T1 Preordered Spaces

Year 2018, Volume: 10, 169 - 172, 29.12.2018

Abstract

The aim of this paper is to characterize local T1 preordered spaces as well as to investigate some
invariance properties of them.

References

  • Adamek, J. , Herrlich, H., Strecker, G.E., Abstract and Concrete Categories, John Wiley and Sons, New York, 1990.
  • Baran, M., {\em Separation properties}, Indian J. Pure Appl. Math., \textbf{23}(1991), 333--341.
  • Baran, M., {\em The notion of closedness in topological categories}, Comment. Math. Univ. Carolinae, \textbf{34}(1993), 383--395.
  • Baran, M., Altindis, H., {\em $T_2$-objects in topological categories}, Acta Math. Hungar. \textbf{71}(1996), 41--48.
  • Baran, M., {\em Separation properties in topological categories}, Math Balkanica \textbf{10}(1996), 39--48.
  • Baran, M., {\em Completely regular objects and normal objects in topological categories}, Acta Math. Hungar., \textbf{80}(1998), 211--224.
  • Baran, M., {\em Closure operators in convergence spaces}, Acta Math. Hungar. \textbf{87}(2000), 33--45.
  • Baran, M., {\em Compactness, perfectness, separation, minimality and closedness with respect to closure operators}, Applied Categorical Structures, \textbf{10}(2002), 403--415.
  • Baran, M., Al-Safar, J., {\em Quotient-Reflective and Bireflective Subcategories of the category of Preordered Sets}, Topology and its Appl., \textbf{158}(2011), 2076--2084.
  • Baran, M. Kula, S., Erciyes, A., {\em $T_0$ and $T_1$ semiuniform convergence space}, Filomat, \textbf{27}(2013), 537--546.
  • Baran, M., Kula, S., Baran, T.M., Qasim, M., {\em Closure operators in semiuniform convergence space}, Filomat, \textbf{30}(2016), 131--140.
  • Baran, T.M., Kula, M., {\em $T_1$ Extended pseudo-quasi-semi metric spaces }, Mathematical Sciences and Appl. E-Notes, \textbf{5}(2017), 40--45.
  • Dikranjan, D., Giuli, E., {\em Closure operators I}, Topology and its Appl., \textbf{27}(1987), 129--143.
  • Dikranjan, D., Tholen, W., Categorical Structure of Closure Operators: with Applications to Topology, Algebra and Discrete Mathematics, Kluwer Academic Publishers, Dordrecht, 1995.
  • Duquenne, V., {\em Latticial structure in data analysis}, Theoret. Comput. Sci. \textbf{217}(1999), 407--436.
  • Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S., Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, 2003.
  • Kula, M., {\em A note on Cauchy spaces}, Acta Math Hungar., \textbf{133}(2011), 14--32.
  • Koshevoy, G.A., {\em Choice functions and abstract convex geometries}, Math. Social Sci., \textbf{38}(1999), 35--44.
  • Larrecq, J.G., Non-Hausdorff Topology and Domain Theory, Cambridge University Press, 2013.
  • Nel, L.D., {\em Initially structured categories and cartesian closedness}, Canadian J.Math., \textbf{27}(1975), 1361-1377.
  • Preuss, G., Theory of Topological Structures, An Approach to Topological Categories, Dordrecht; D Reidel Publ Co, 1988.
  • Preuss, G., Foundations of topology, An approach to Convenient topology, Kluwer Academic Publishers, Dordrecht, 2002.
  • Scott, D.S., {\em Continuous lattices}, Lecture Notes in Mathematics, Springer-Verlag, \textbf{274}(1972), 97--136.
  • Scott, D.S., {\em Data types as lattices}, Proceedings of the International Summer Institute and Logic Colloquium, Kiel, in: Lecture Notes in Mathematics, Springer-Verlag, \textbf{499}(1975), 579--651.
  • Scott, D.S., {\em Domains for denotational semantics}, in: Lecture Notes in Comp. Sci., Springer-Verlag, \textbf{140}(1982), 97--136.
  • Winskel, G. The Formal Semantics of Programming Languages, an Introduction. Foundations of Computing Series. The MIT Press, 1993.
Year 2018, Volume: 10, 169 - 172, 29.12.2018

Abstract

References

  • Adamek, J. , Herrlich, H., Strecker, G.E., Abstract and Concrete Categories, John Wiley and Sons, New York, 1990.
  • Baran, M., {\em Separation properties}, Indian J. Pure Appl. Math., \textbf{23}(1991), 333--341.
  • Baran, M., {\em The notion of closedness in topological categories}, Comment. Math. Univ. Carolinae, \textbf{34}(1993), 383--395.
  • Baran, M., Altindis, H., {\em $T_2$-objects in topological categories}, Acta Math. Hungar. \textbf{71}(1996), 41--48.
  • Baran, M., {\em Separation properties in topological categories}, Math Balkanica \textbf{10}(1996), 39--48.
  • Baran, M., {\em Completely regular objects and normal objects in topological categories}, Acta Math. Hungar., \textbf{80}(1998), 211--224.
  • Baran, M., {\em Closure operators in convergence spaces}, Acta Math. Hungar. \textbf{87}(2000), 33--45.
  • Baran, M., {\em Compactness, perfectness, separation, minimality and closedness with respect to closure operators}, Applied Categorical Structures, \textbf{10}(2002), 403--415.
  • Baran, M., Al-Safar, J., {\em Quotient-Reflective and Bireflective Subcategories of the category of Preordered Sets}, Topology and its Appl., \textbf{158}(2011), 2076--2084.
  • Baran, M. Kula, S., Erciyes, A., {\em $T_0$ and $T_1$ semiuniform convergence space}, Filomat, \textbf{27}(2013), 537--546.
  • Baran, M., Kula, S., Baran, T.M., Qasim, M., {\em Closure operators in semiuniform convergence space}, Filomat, \textbf{30}(2016), 131--140.
  • Baran, T.M., Kula, M., {\em $T_1$ Extended pseudo-quasi-semi metric spaces }, Mathematical Sciences and Appl. E-Notes, \textbf{5}(2017), 40--45.
  • Dikranjan, D., Giuli, E., {\em Closure operators I}, Topology and its Appl., \textbf{27}(1987), 129--143.
  • Dikranjan, D., Tholen, W., Categorical Structure of Closure Operators: with Applications to Topology, Algebra and Discrete Mathematics, Kluwer Academic Publishers, Dordrecht, 1995.
  • Duquenne, V., {\em Latticial structure in data analysis}, Theoret. Comput. Sci. \textbf{217}(1999), 407--436.
  • Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S., Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, 2003.
  • Kula, M., {\em A note on Cauchy spaces}, Acta Math Hungar., \textbf{133}(2011), 14--32.
  • Koshevoy, G.A., {\em Choice functions and abstract convex geometries}, Math. Social Sci., \textbf{38}(1999), 35--44.
  • Larrecq, J.G., Non-Hausdorff Topology and Domain Theory, Cambridge University Press, 2013.
  • Nel, L.D., {\em Initially structured categories and cartesian closedness}, Canadian J.Math., \textbf{27}(1975), 1361-1377.
  • Preuss, G., Theory of Topological Structures, An Approach to Topological Categories, Dordrecht; D Reidel Publ Co, 1988.
  • Preuss, G., Foundations of topology, An approach to Convenient topology, Kluwer Academic Publishers, Dordrecht, 2002.
  • Scott, D.S., {\em Continuous lattices}, Lecture Notes in Mathematics, Springer-Verlag, \textbf{274}(1972), 97--136.
  • Scott, D.S., {\em Data types as lattices}, Proceedings of the International Summer Institute and Logic Colloquium, Kiel, in: Lecture Notes in Mathematics, Springer-Verlag, \textbf{499}(1975), 579--651.
  • Scott, D.S., {\em Domains for denotational semantics}, in: Lecture Notes in Comp. Sci., Springer-Verlag, \textbf{140}(1982), 97--136.
  • Winskel, G. The Formal Semantics of Programming Languages, an Introduction. Foundations of Computing Series. The MIT Press, 1993.
There are 26 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mehmet Baran

Publication Date December 29, 2018
Published in Issue Year 2018 Volume: 10

Cite

APA Baran, M. (2018). Local T1 Preordered Spaces. Turkish Journal of Mathematics and Computer Science, 10, 169-172.
AMA Baran M. Local T1 Preordered Spaces. TJMCS. December 2018;10:169-172.
Chicago Baran, Mehmet. “Local T1 Preordered Spaces”. Turkish Journal of Mathematics and Computer Science 10, December (December 2018): 169-72.
EndNote Baran M (December 1, 2018) Local T1 Preordered Spaces. Turkish Journal of Mathematics and Computer Science 10 169–172.
IEEE M. Baran, “Local T1 Preordered Spaces”, TJMCS, vol. 10, pp. 169–172, 2018.
ISNAD Baran, Mehmet. “Local T1 Preordered Spaces”. Turkish Journal of Mathematics and Computer Science 10 (December 2018), 169-172.
JAMA Baran M. Local T1 Preordered Spaces. TJMCS. 2018;10:169–172.
MLA Baran, Mehmet. “Local T1 Preordered Spaces”. Turkish Journal of Mathematics and Computer Science, vol. 10, 2018, pp. 169-72.
Vancouver Baran M. Local T1 Preordered Spaces. TJMCS. 2018;10:169-72.