Local T_2 Constant Filter Convergence Spaces
Year 2018,
Volume: 10, 88 - 94, 29.12.2018
Ayhan Erciyes
,
Tesnim Meryem Baran
Abstract
The aim of this paper is to characterize local Hausdorff constant filter convergence spaces and show that they are hereditary, productive and coproductive.
References
- Adamek, J., Herrlich, H., Strecker, G.E., Abstract and Concrete Categories, New York, USA: Wiley, 1990.
- Baran, M., Separation Properties, Indian J. Pure Appl. Math., 23(1991), 333–341.
- Baran, M., The notion of closedness in topological categories, Comment. Math. Univ. Carolinae, 34(1993), 383–395.
- Baran, M., Separation Properties In Category Of Stack Convergence Spaces, Turkish Journal of Mathematics, 17(1993), 55–62.
- Baran, M., Generalized Local Separation Properties, Indian J. pure appl. 25(1994), 615–620.
- Baran, M., Separation Properties In Categories Of Constant Convergence Spaces, Turkish Journal of Mathematics, 18(1994), 238–248.
- Baran M. and Altindis, H., T0-Objects in Topological Categories, J. Univ. Kuwait (Sci) Math. Hungar. 22(1995), 123–127.
- Baran M. and Altindis, H., T2-Objects in Topological Categories, Acta Math. Hungar. 71(1996), 41–48.
- Baran, M., Separation properties in topological categories, Math Balkanica 10(1996), 39–48.
- Baran, M., T3 and T4-Objects In Topological Categories, Indian J. Pure Appl. Math., 29(1998), 59–69.
- Baran, M., Completely regular objects and normal objects in topological categories, Acta Math. Hungar 1998; 80: 211-224.
- Baran, M., Closure operators in convergence spaces, Acta Math. Hungar. 87(2000), 33–45.
- Baran, M., Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures, 10(2002), 403–415.
- Baran, M., PreT2 Objects In Topological Categories, Appl. Categor. Struct., 17(2009), 591–602.
- Baran, M. and Al-Safar, J., Quotient-Reflective and Bireflective Subcategories of the category of Preordered Sets, Topology and its Appl., 158(2011), 2076–2084.
- Baran, M. Kula, S., Baran, T. M., and Qasim, M., Closure operators in semiuniform convergence space, Filomat, 30 (2016), 131–140.
- Bourbaki, N., Topologie generale. Chapitre 1 et 2. Actualites Sci. Ind., 1940.
- Cartan, H., Filtres et ultrafiltres, CR Acad. Paris, 205(1937), 777–779.
- Cartan, H., Th´eorie des filtres, CR Acad. Paris, 205(1937), 595–598.
- Choquet, G.,Convergences, Ann. Univ. Grenoble Sect. Sci. Math. Phys. (NS) 23.(1948), 57–112.
- Cook, H.C., and Fisher, H.R., On equicontinuity and continuous convergence, Math. Ann. 159(1965), 94–104.
- Dikranjan, D. and Giuli, E., Closure operators I, Topology and its Appl., 27(1987), 129–143.
- Dikranjan, D. and Tholen W., Categorical Structure of Closure Operators: with Applications to Topology, Algebra and Discrete Mathematics, Kluwer Academic Publishers, Dordrecht, 1995.
- Erciyes, A., Baran, M., Local Pre-Hausdor_ Constant Filter Convergence Spaces, Turk. J. Math. Comput. Sci. 2018.
- Fischer, H.R., Limesraume, Math. Ann. 137(1959), 269–303.
- Herrlich, H., Topological functors, Gen Topology Appl 4(1974), 125–142.
- Johnstone, P.T., Topos Theory, L.M.S Mathematics Monograph: No. 10. Academic, New York 1977.
- Kent, D.C., Convergence functions and their related topologies, Fund. Math. 54(1964), 125–133.
- Kowalsky, H.J., Beitrage zur topologischen algebra, Math. Nachrichten 11(1954), 143–185.
- MacLane, S., Moerdijk, I., Sheaves in Geometry and Logic., Springer, New York, 1992.
- Lowen-Colebunders, E., Function Classes of Cauchy Continuous Maps, New York USA; Marcel Dekker Inc, 1989.
- Nel, L.D., Initially structured categories and cartesian closedness, Canadian J.Math., 27(1975), 1361–1377.
- Preuss, G., Theory of Topological Structures, An Approach to Topological Categories, Dordrecht; D Reidel Publ Co, 1988.
- Preuss, G., Foundations of topology, An approach to Convenient topology, Kluwer Academic Publishers, Dordrecht, 2002.
- Robertson, W., Convergence as a nearness concept, Ph.D. thesis, University of Ottawa at Carleton, 1975.
- Schwarz, F. Hannover, TU., Connections Between Convergence And Nearness, The series Lecture Notes in Mathematics, 719(1979), 345–357.
Year 2018,
Volume: 10, 88 - 94, 29.12.2018
Ayhan Erciyes
,
Tesnim Meryem Baran
References
- Adamek, J., Herrlich, H., Strecker, G.E., Abstract and Concrete Categories, New York, USA: Wiley, 1990.
- Baran, M., Separation Properties, Indian J. Pure Appl. Math., 23(1991), 333–341.
- Baran, M., The notion of closedness in topological categories, Comment. Math. Univ. Carolinae, 34(1993), 383–395.
- Baran, M., Separation Properties In Category Of Stack Convergence Spaces, Turkish Journal of Mathematics, 17(1993), 55–62.
- Baran, M., Generalized Local Separation Properties, Indian J. pure appl. 25(1994), 615–620.
- Baran, M., Separation Properties In Categories Of Constant Convergence Spaces, Turkish Journal of Mathematics, 18(1994), 238–248.
- Baran M. and Altindis, H., T0-Objects in Topological Categories, J. Univ. Kuwait (Sci) Math. Hungar. 22(1995), 123–127.
- Baran M. and Altindis, H., T2-Objects in Topological Categories, Acta Math. Hungar. 71(1996), 41–48.
- Baran, M., Separation properties in topological categories, Math Balkanica 10(1996), 39–48.
- Baran, M., T3 and T4-Objects In Topological Categories, Indian J. Pure Appl. Math., 29(1998), 59–69.
- Baran, M., Completely regular objects and normal objects in topological categories, Acta Math. Hungar 1998; 80: 211-224.
- Baran, M., Closure operators in convergence spaces, Acta Math. Hungar. 87(2000), 33–45.
- Baran, M., Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures, 10(2002), 403–415.
- Baran, M., PreT2 Objects In Topological Categories, Appl. Categor. Struct., 17(2009), 591–602.
- Baran, M. and Al-Safar, J., Quotient-Reflective and Bireflective Subcategories of the category of Preordered Sets, Topology and its Appl., 158(2011), 2076–2084.
- Baran, M. Kula, S., Baran, T. M., and Qasim, M., Closure operators in semiuniform convergence space, Filomat, 30 (2016), 131–140.
- Bourbaki, N., Topologie generale. Chapitre 1 et 2. Actualites Sci. Ind., 1940.
- Cartan, H., Filtres et ultrafiltres, CR Acad. Paris, 205(1937), 777–779.
- Cartan, H., Th´eorie des filtres, CR Acad. Paris, 205(1937), 595–598.
- Choquet, G.,Convergences, Ann. Univ. Grenoble Sect. Sci. Math. Phys. (NS) 23.(1948), 57–112.
- Cook, H.C., and Fisher, H.R., On equicontinuity and continuous convergence, Math. Ann. 159(1965), 94–104.
- Dikranjan, D. and Giuli, E., Closure operators I, Topology and its Appl., 27(1987), 129–143.
- Dikranjan, D. and Tholen W., Categorical Structure of Closure Operators: with Applications to Topology, Algebra and Discrete Mathematics, Kluwer Academic Publishers, Dordrecht, 1995.
- Erciyes, A., Baran, M., Local Pre-Hausdor_ Constant Filter Convergence Spaces, Turk. J. Math. Comput. Sci. 2018.
- Fischer, H.R., Limesraume, Math. Ann. 137(1959), 269–303.
- Herrlich, H., Topological functors, Gen Topology Appl 4(1974), 125–142.
- Johnstone, P.T., Topos Theory, L.M.S Mathematics Monograph: No. 10. Academic, New York 1977.
- Kent, D.C., Convergence functions and their related topologies, Fund. Math. 54(1964), 125–133.
- Kowalsky, H.J., Beitrage zur topologischen algebra, Math. Nachrichten 11(1954), 143–185.
- MacLane, S., Moerdijk, I., Sheaves in Geometry and Logic., Springer, New York, 1992.
- Lowen-Colebunders, E., Function Classes of Cauchy Continuous Maps, New York USA; Marcel Dekker Inc, 1989.
- Nel, L.D., Initially structured categories and cartesian closedness, Canadian J.Math., 27(1975), 1361–1377.
- Preuss, G., Theory of Topological Structures, An Approach to Topological Categories, Dordrecht; D Reidel Publ Co, 1988.
- Preuss, G., Foundations of topology, An approach to Convenient topology, Kluwer Academic Publishers, Dordrecht, 2002.
- Robertson, W., Convergence as a nearness concept, Ph.D. thesis, University of Ottawa at Carleton, 1975.
- Schwarz, F. Hannover, TU., Connections Between Convergence And Nearness, The series Lecture Notes in Mathematics, 719(1979), 345–357.