Some Inequalities Related to $\eta -$Strongly Convex Functions
Year 2018,
Volume: 10, 207 - 214, 29.12.2018
Seda Kılınç
,
Abdullah Akkurt
,
Hüseyin Yıldırım
Abstract
The aim of this paper, is to establish some new inequalities of Hermite-Hadamard type by using $\eta -$strongly convex function. Moreover, we also consider their relevances for other related known results. The aim of this paper, is to establish some new inequalities of Hermite-Hadamard type by using $\eta -$strongly convex function. Moreover, we also consider their relevances for other related known results.
References
- Aleman, A., On some generalizations of convex sets and convex functions, Anal. Numer.Theor. Approx., 14(1985), 1–6.
- Bector, C.R., Singh, C., B-Vex functions, J. Optim. Theory. Appl., 71(2)(1991), 237–253.
- De, B., . . . netti, Sulla strati. . . cazioni convesse, Ann. Math. Pura. Appl., 30(1949), 173–183.
- Dragomir, S.S., Inequalities of Hermite-Hadamard type for $\lambda$ -convex functions on linear spaces, Preprint RGMIA Res. Rep. Coll. 17(2014), Art. 13, pp.18. [Online http://rgmia.org/papers/v17/v17a13.pdf].
- Fejer, L., Uberdie fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss., 24(1906), 369–390.
- Hanson, M.A., On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80(1981), 545–550.
- Hyers, D.H., Ulam, S.M., Approximately convex functions, Proc. Amer. Math. Soc., 3(1952), 821–828.
- Hsu, I., Kuller, R.G., Convexity of vector-valued functions, Proc. Amer. Math. Soc., 46(1974), 363–366.
- Jensen, J.L.W.V., On konvexe funktioner og uligheder mellem middlvaerdier, Nyt. Tidsskr. Math. B., 16(1905), 49-69.
- Luc, D.T., Theory of Vector Optimization, Springer-Verlag, Berlin, 1989.
- Mangasarian, O.L., Pseudo-Convex functions, SIAM Journal on Control, 3(1965), 281–290.
- Özdemir, M.E., Avci, M., Kavurmaci, H., Hermite-Hadamard-type inequalities via ( $\alpha $;m)-convexity, Comput. Math. Appl., 61(9)(2011), 2614–2620.
- Peˇcari´c, J.E., Proschan, F., Tong, Y.L., Convex functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
- Polyak, B.T., Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl.,
7(1966) 72–75.
- Rajba, T., On strong delta-convexity and Hermite-Hadamard type inequalities for delta convex functions of higher order, Math. Inequal. Appl.,
18(1)(2015), 267–293.
- Robert, A.W., Varbeg, D.E., Convex Functions, Academic Press, 1973.
Year 2018,
Volume: 10, 207 - 214, 29.12.2018
Seda Kılınç
,
Abdullah Akkurt
,
Hüseyin Yıldırım
References
- Aleman, A., On some generalizations of convex sets and convex functions, Anal. Numer.Theor. Approx., 14(1985), 1–6.
- Bector, C.R., Singh, C., B-Vex functions, J. Optim. Theory. Appl., 71(2)(1991), 237–253.
- De, B., . . . netti, Sulla strati. . . cazioni convesse, Ann. Math. Pura. Appl., 30(1949), 173–183.
- Dragomir, S.S., Inequalities of Hermite-Hadamard type for $\lambda$ -convex functions on linear spaces, Preprint RGMIA Res. Rep. Coll. 17(2014), Art. 13, pp.18. [Online http://rgmia.org/papers/v17/v17a13.pdf].
- Fejer, L., Uberdie fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss., 24(1906), 369–390.
- Hanson, M.A., On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80(1981), 545–550.
- Hyers, D.H., Ulam, S.M., Approximately convex functions, Proc. Amer. Math. Soc., 3(1952), 821–828.
- Hsu, I., Kuller, R.G., Convexity of vector-valued functions, Proc. Amer. Math. Soc., 46(1974), 363–366.
- Jensen, J.L.W.V., On konvexe funktioner og uligheder mellem middlvaerdier, Nyt. Tidsskr. Math. B., 16(1905), 49-69.
- Luc, D.T., Theory of Vector Optimization, Springer-Verlag, Berlin, 1989.
- Mangasarian, O.L., Pseudo-Convex functions, SIAM Journal on Control, 3(1965), 281–290.
- Özdemir, M.E., Avci, M., Kavurmaci, H., Hermite-Hadamard-type inequalities via ( $\alpha $;m)-convexity, Comput. Math. Appl., 61(9)(2011), 2614–2620.
- Peˇcari´c, J.E., Proschan, F., Tong, Y.L., Convex functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
- Polyak, B.T., Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl.,
7(1966) 72–75.
- Rajba, T., On strong delta-convexity and Hermite-Hadamard type inequalities for delta convex functions of higher order, Math. Inequal. Appl.,
18(1)(2015), 267–293.
- Robert, A.W., Varbeg, D.E., Convex Functions, Academic Press, 1973.