Research Article
BibTex RIS Cite
Year 2021, Volume: 13 Issue: 1, 6 - 13, 30.06.2021

Abstract

References

  • [1] Abdollahzadeh Ahangar, H. , Amjadi, J. , Chellali, M. , Nazari-Moghaddam, S. , Sheikholeslami, S. M. , Trees with Double Roman Domination Number Twice the Domination Number Plus Two, Iranian Journal of Science and Technology, Transactions A: Science, (2018), 1–8.
  • [2] Arquilla, J. , Fredricksen, H., Graphing an optimal grand strategy, Military Operations Research 3(1995), 3–17.
  • [3] Bermudo, S. , Fernau, H. , Sigarreta, J.M., The di erential and the Roman domination number of a graph, Applicable Analysis and DiscreteMathematics, 8(2014) 155–171.
  • [4] Beeler, R.A , Haynes, T. W. , Hedetniemi, S.T., Double Roman domination, Discrete Appl Math 211(2016) 23–29.
  • [5] Bermudo, S. , Hernandez-Gomez, J.C. , Rodriguez, J.M. , Sigarreta, J.M., Relations between the di erential and parameters in graphs, Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics, 46(2014) 281–288.
  • [6] Cockayne, E.J. , Dreyer, P.A. , Hedetniemi, S.M. , Hedetniemi, S.T., Roman domination in graphs, Discrete Mathematics 278(2004) 11–22.
  • [7] Hao, G. , Volkmann, L. , Mojdeh, D.A., Total double Roman domination in graphs, Communications in Combinatorics and Optimization 1(2020) 27–39 DOI: 10.22049/CCO.2019.26484.1118.
  • [8] Haynes, T.W. , Hedetniemi, S.T. , Slater, P.J. , Fundamentals of Domination in graphs, New York: Marcel Dekker, (1998).
  • [9] Henning, M.A., A characterization of Roman trees, Discussiones Mathematicae Graph Theory, 22(2002) 325–334.
  • [10] Klostermeyer, W.F. , Mynhardt, C. M. , Protecting a graph with mobile guards, Appl. Anal. Discrete Math, 10(2016) 1–29.
  • [11] Lewis, J.R. , Di erentials of graphs, Master’s Thesis, East Tennessee State University, (2004).
  • [12] Mojdeh, D.A. , Mansourim, Zh. , On the Independent Double Roman Domination in Graphs, Bulletin of the Iranian Mathematical Society, https://doi.org/10.1007/s41980-019-00300-9.
  • [13] Mojdeh, D.A. , Parsian, A. , Masoumi, I. , Characterization of double Roman trees, Ars combinatoria, (2018) to appear.
  • [14] ReVelle, C.S., Can you protect the Roman Empire? Johns Hopkins Magazine 50(2)(1997).
  • [15] ReVelle, C.S. , Rosing, K.E. , Defendens imperium romanum: a classical problem in military strategy, American Mathematical Monthly, 107(7)(2000) 585–594.
  • [16] Stewart, I. , Defend the Roman empire!, Scientific American, 281(6)(1999), 136–139.
  • [17] West, D.B. , Introduction to Graph theory, Second edition, Prentice Hall, (2001).

A New Approach on Roman Graphs

Year 2021, Volume: 13 Issue: 1, 6 - 13, 30.06.2021

Abstract

Let $G=(V,E)$ be a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. A Roman dominating function (RDF) on a graph $G$ is a function $f:V\rightarrow\{0,1,2\}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ such that $f(v)=2$. The weight of $f$ is $\omega(f)=\Sigma_{v\in V}f(v)$. The minimum weight of an RDF on $G$, $\gamma_{R}(G)$, is called the Roman domination number of $G$. $\gamma_{R}(G)\leq 2\gamma(G)$ where $\gamma(G)$ denotes the domination number of $G$. A graph $G$ is called a Roman graph whenever $\gamma_{R}(G)= 2\gamma(G)$. On the other hand, the differential of $X$ is defined as $\partial(X)=|B(X)|-|X|$ and the differential of a graph $G$, written $\partial(G)$, is equal to $max\{\partial(X): X\subseteq V\}$. By using differential we provide a sufficient and necessary condition for the graphs to be Roman. We also modify the proof of a result on Roman trees. Finally we characterize the large family of trees $T$ such that $\partial(T)=n-\gamma(T)-2$.

References

  • [1] Abdollahzadeh Ahangar, H. , Amjadi, J. , Chellali, M. , Nazari-Moghaddam, S. , Sheikholeslami, S. M. , Trees with Double Roman Domination Number Twice the Domination Number Plus Two, Iranian Journal of Science and Technology, Transactions A: Science, (2018), 1–8.
  • [2] Arquilla, J. , Fredricksen, H., Graphing an optimal grand strategy, Military Operations Research 3(1995), 3–17.
  • [3] Bermudo, S. , Fernau, H. , Sigarreta, J.M., The di erential and the Roman domination number of a graph, Applicable Analysis and DiscreteMathematics, 8(2014) 155–171.
  • [4] Beeler, R.A , Haynes, T. W. , Hedetniemi, S.T., Double Roman domination, Discrete Appl Math 211(2016) 23–29.
  • [5] Bermudo, S. , Hernandez-Gomez, J.C. , Rodriguez, J.M. , Sigarreta, J.M., Relations between the di erential and parameters in graphs, Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics, 46(2014) 281–288.
  • [6] Cockayne, E.J. , Dreyer, P.A. , Hedetniemi, S.M. , Hedetniemi, S.T., Roman domination in graphs, Discrete Mathematics 278(2004) 11–22.
  • [7] Hao, G. , Volkmann, L. , Mojdeh, D.A., Total double Roman domination in graphs, Communications in Combinatorics and Optimization 1(2020) 27–39 DOI: 10.22049/CCO.2019.26484.1118.
  • [8] Haynes, T.W. , Hedetniemi, S.T. , Slater, P.J. , Fundamentals of Domination in graphs, New York: Marcel Dekker, (1998).
  • [9] Henning, M.A., A characterization of Roman trees, Discussiones Mathematicae Graph Theory, 22(2002) 325–334.
  • [10] Klostermeyer, W.F. , Mynhardt, C. M. , Protecting a graph with mobile guards, Appl. Anal. Discrete Math, 10(2016) 1–29.
  • [11] Lewis, J.R. , Di erentials of graphs, Master’s Thesis, East Tennessee State University, (2004).
  • [12] Mojdeh, D.A. , Mansourim, Zh. , On the Independent Double Roman Domination in Graphs, Bulletin of the Iranian Mathematical Society, https://doi.org/10.1007/s41980-019-00300-9.
  • [13] Mojdeh, D.A. , Parsian, A. , Masoumi, I. , Characterization of double Roman trees, Ars combinatoria, (2018) to appear.
  • [14] ReVelle, C.S., Can you protect the Roman Empire? Johns Hopkins Magazine 50(2)(1997).
  • [15] ReVelle, C.S. , Rosing, K.E. , Defendens imperium romanum: a classical problem in military strategy, American Mathematical Monthly, 107(7)(2000) 585–594.
  • [16] Stewart, I. , Defend the Roman empire!, Scientific American, 281(6)(1999), 136–139.
  • [17] West, D.B. , Introduction to Graph theory, Second edition, Prentice Hall, (2001).
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Doost Ali Mojdeh

İman Masoumi 0000-0002-5215-615X

Ali Parsian This is me 0000-0001-6323-5956

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 13 Issue: 1

Cite

APA Mojdeh, D. A., Masoumi, İ., & Parsian, A. (2021). A New Approach on Roman Graphs. Turkish Journal of Mathematics and Computer Science, 13(1), 6-13. https://doi.org/10.47000/tjmcs.766711
AMA Mojdeh DA, Masoumi İ, Parsian A. A New Approach on Roman Graphs. TJMCS. June 2021;13(1):6-13. doi:10.47000/tjmcs.766711
Chicago Mojdeh, Doost Ali, İman Masoumi, and Ali Parsian. “A New Approach on Roman Graphs”. Turkish Journal of Mathematics and Computer Science 13, no. 1 (June 2021): 6-13. https://doi.org/10.47000/tjmcs.766711.
EndNote Mojdeh DA, Masoumi İ, Parsian A (June 1, 2021) A New Approach on Roman Graphs. Turkish Journal of Mathematics and Computer Science 13 1 6–13.
IEEE D. A. Mojdeh, İ. Masoumi, and A. Parsian, “A New Approach on Roman Graphs”, TJMCS, vol. 13, no. 1, pp. 6–13, 2021, doi: 10.47000/tjmcs.766711.
ISNAD Mojdeh, Doost Ali et al. “A New Approach on Roman Graphs”. Turkish Journal of Mathematics and Computer Science 13/1 (June 2021), 6-13. https://doi.org/10.47000/tjmcs.766711.
JAMA Mojdeh DA, Masoumi İ, Parsian A. A New Approach on Roman Graphs. TJMCS. 2021;13:6–13.
MLA Mojdeh, Doost Ali et al. “A New Approach on Roman Graphs”. Turkish Journal of Mathematics and Computer Science, vol. 13, no. 1, 2021, pp. 6-13, doi:10.47000/tjmcs.766711.
Vancouver Mojdeh DA, Masoumi İ, Parsian A. A New Approach on Roman Graphs. TJMCS. 2021;13(1):6-13.