Research Article
BibTex RIS Cite

Quaternionic and Dual Quaternionic Darboux Ruled Surfaces

Year 2021, Volume: 13 Issue: 1, 106 - 114, 30.06.2021
https://doi.org/10.47000/tjmcs.858793

Abstract

In this paper, firstly the ruled surface drawn by the Darboux vector is expressed as a quaternion. Then, the spatial quaternionic definition of the striction curve is given and the integral invariants of the surface are calculated. Finally, the ruled surface which corresponds to a dual curve drawn by a dual Darboux vector is derived with the help of dual spatial quaternions and dual integral invariants of the ruled surface are obtained.

References

  • [1] Aslan, S., Yaylı, Y., Quaternionic shape operator, Adv. Appl. Clifford Algebras, 27(2017), 2921–2931.
  • [2] Babaarslan, M., Yaylı, Y., A new approach to constant slope surfaces with quaternions, ISRN Geom., 8(2012), article ID 126358.
  • [3] Bharathi, K., Nagaraj, M., Quaternion valued function of a real variable Serret-Frenet formulae, Ind. J. P. Appl. Math., 18(1987), 507–511.
  • [4] Çalışkan, A., S¸enyurt, S., The dual spatial quaternionic expression of ruled surfaces, Thermal Science, 23(1)(2019), 403–411.
  • [5] Çalışkan, A., Spatial Quaternionic Curves and Ruled Surfaces, Ph.D. Thesis, Ordu University, Ordu, Turkey, 2020.
  • [6] Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice-Hall, USA, 1976.
  • [7] Hamilton, W.R., Elements of Quaternions, New York, 1899.
  • [8] Hacısalihoğlu, H.H., Motion Geometry and Quaternions Theory (in Turkish), University of Gazi Press, Turkey, 1983.
  • [9] Hanson, A.J., Visualing Quaternions, Elsevier, USA, 2006.
  • [10] Shoemake, K., Animating rotation with quaternion curves, Siggraph Computer Graphics, 19(1985), 245–254.
  • [11] Sivridağ, A.˙I., Güneş, R., Keles¸, S., The Serret-Frenet formulae for dual quaternion-valued functions of a single real variable, Mechanism and Machine Theory, 29(5)(1994), 749-754.
  • [12] Stoker, J.J., Differential Geometry, Wiley-Interscience, New York, 1969.
  • [13] Şenyurt, S., Cevahir, C., Altun, Y., On spatial quaternionic involute curve a new view, Adv. Appl. Clifford Algebr., (2016), 1–10.
  • [14] Şenyurt, S., Çalışkan, A., The quaternionic expression of ruled surfaces, Filomat, 32(16)(2018), 5753-5766.
Year 2021, Volume: 13 Issue: 1, 106 - 114, 30.06.2021
https://doi.org/10.47000/tjmcs.858793

Abstract

References

  • [1] Aslan, S., Yaylı, Y., Quaternionic shape operator, Adv. Appl. Clifford Algebras, 27(2017), 2921–2931.
  • [2] Babaarslan, M., Yaylı, Y., A new approach to constant slope surfaces with quaternions, ISRN Geom., 8(2012), article ID 126358.
  • [3] Bharathi, K., Nagaraj, M., Quaternion valued function of a real variable Serret-Frenet formulae, Ind. J. P. Appl. Math., 18(1987), 507–511.
  • [4] Çalışkan, A., S¸enyurt, S., The dual spatial quaternionic expression of ruled surfaces, Thermal Science, 23(1)(2019), 403–411.
  • [5] Çalışkan, A., Spatial Quaternionic Curves and Ruled Surfaces, Ph.D. Thesis, Ordu University, Ordu, Turkey, 2020.
  • [6] Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice-Hall, USA, 1976.
  • [7] Hamilton, W.R., Elements of Quaternions, New York, 1899.
  • [8] Hacısalihoğlu, H.H., Motion Geometry and Quaternions Theory (in Turkish), University of Gazi Press, Turkey, 1983.
  • [9] Hanson, A.J., Visualing Quaternions, Elsevier, USA, 2006.
  • [10] Shoemake, K., Animating rotation with quaternion curves, Siggraph Computer Graphics, 19(1985), 245–254.
  • [11] Sivridağ, A.˙I., Güneş, R., Keles¸, S., The Serret-Frenet formulae for dual quaternion-valued functions of a single real variable, Mechanism and Machine Theory, 29(5)(1994), 749-754.
  • [12] Stoker, J.J., Differential Geometry, Wiley-Interscience, New York, 1969.
  • [13] Şenyurt, S., Cevahir, C., Altun, Y., On spatial quaternionic involute curve a new view, Adv. Appl. Clifford Algebr., (2016), 1–10.
  • [14] Şenyurt, S., Çalışkan, A., The quaternionic expression of ruled surfaces, Filomat, 32(16)(2018), 5753-5766.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Abdussamet Çalışkan 0000-0002-1512-2452

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 13 Issue: 1

Cite

APA Çalışkan, A. (2021). Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. Turkish Journal of Mathematics and Computer Science, 13(1), 106-114. https://doi.org/10.47000/tjmcs.858793
AMA Çalışkan A. Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. TJMCS. June 2021;13(1):106-114. doi:10.47000/tjmcs.858793
Chicago Çalışkan, Abdussamet. “Quaternionic and Dual Quaternionic Darboux Ruled Surfaces”. Turkish Journal of Mathematics and Computer Science 13, no. 1 (June 2021): 106-14. https://doi.org/10.47000/tjmcs.858793.
EndNote Çalışkan A (June 1, 2021) Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. Turkish Journal of Mathematics and Computer Science 13 1 106–114.
IEEE A. Çalışkan, “Quaternionic and Dual Quaternionic Darboux Ruled Surfaces”, TJMCS, vol. 13, no. 1, pp. 106–114, 2021, doi: 10.47000/tjmcs.858793.
ISNAD Çalışkan, Abdussamet. “Quaternionic and Dual Quaternionic Darboux Ruled Surfaces”. Turkish Journal of Mathematics and Computer Science 13/1 (June 2021), 106-114. https://doi.org/10.47000/tjmcs.858793.
JAMA Çalışkan A. Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. TJMCS. 2021;13:106–114.
MLA Çalışkan, Abdussamet. “Quaternionic and Dual Quaternionic Darboux Ruled Surfaces”. Turkish Journal of Mathematics and Computer Science, vol. 13, no. 1, 2021, pp. 106-14, doi:10.47000/tjmcs.858793.
Vancouver Çalışkan A. Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. TJMCS. 2021;13(1):106-14.