Let $\mathcal{L}$ be a bounded lattice. The essential element graph of $\mathcal{L}$ is a simple undirected graph $\varepsilon_{\mathcal{L}}$ such that the elements $x,y$ of $\mathcal{L}$ form an edge in $\varepsilon_{\mathcal{L}}$, whenever $x \vee y $ is an essential element of $\mathcal{L}$. In this paper, we study properties of the essential elements of lattices and essential element graphs. We study the lattices whose zero-divisor graphs and incomparability graphs are isomorphic to its essential element graphs. Moreover, the line essential element graphs are investigated.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 23 Aralık 2022 |
Yayımlanma Tarihi | 30 Aralık 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 14 Sayı: 2 |