Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 14 Sayı: 2, 248 - 255, 30.12.2022
https://doi.org/10.47000/tjmcs.885881

Öz

Kaynakça

  • Afkhami, M., Barati, Z., Khashyarmanesh, K., Planar zero-divisor graphs of partially ordered sets, Acta Math. Hungar., 137(2012), 27–35.
  • Afkhami, M., Khashyarmanesh, K., The comaximal graph of a lattice, Bull. Malays. Math. Sci. Soc., 37(1)(2014), 261–269.
  • Afkhami, M., Barati Z., Khashyarmanesh, K., A graph associated to a lattice , Ricerche Mat., 63(2014), 67–78.
  • Akbari, S., Alilou, A., Amjadi J., Sheikholeslami, S.M., The co-annihilating-ideal graphs of commutative rings, Canad. Math. Bull., 60(2017), 3–11.
  • Albu, T., Iosif, M., Modular C11 lattices and lattice preradicals, Journal of Algebra and Its Applications, 16(5)(2017), 1–19.
  • Anderson, D.F., Livingston P.S., The zero-divisor graph of commutative ring, J. Algebra, 217(1999), 434–447.
  • Beck, I., Coloring of commutative rings, J. Algebra, 116(1988), 208–226.
  • Beineke, L.W., Characterizations of derived graphs, J. Comb. Theory, 9(1970), 129–135.
  • Chartrand, G., Zhang, P., Chromatic Graph Theory, Chapman and Hall/CRC, 2008, 298p.
  • Chelvam, T.T., Nithya, S., A note on the zero divisor graph of a lattice, Trans. on Combin., 3(3)(2014), 51–59.
  • Curtis, A.R., Diesl, A.J., Rieck, J.C., Classifying annihilating-ideal graphs of commutative artinian rings, Communications in Algebra, 46(9)(2018), 4131–4147.
  • Davey, B.A., Priestly, H.A., Introduction to Lattices and Order, 2nd, Cambridge University Press, 2002, 312p.
  • Das, A.K., Nongsiang, D., On reduced zero-divisor graphs of posets, Journal of Discrete Mathematics, 2015(2015), 1–7.
  • Krithika, R., Mathew, R., Narayanaswamy, N.S., Sadagopan N., A Dirac-type characterization of k-chordal graphs, Discrete Math., 313(2013), 2865–2867.
  • Lu, D., Wu T., The Zero-divisor graphs of posets and an application to semigroups, Graphs and Combinatorics, 26(2010), 793–804.
  • Nimbhorkar, S., Deshmukh, D., The essential element graph of a lattice, Asian-European J of Math., 13(1)(2020), 1–9.
  • Nimbhokar, S.K., Wasadikar, M.P., Pawar, M.M., Coloring of lattices, Math. Slovaca, 60(2010), 419–434.
  • Nimbhokar, S.K., Vidya, S.D., Incomparability graphs of dismantable lattices , Asian-European J of Math., 13(1)(2020), 1–8.
  • Parsapour, A., Javaheri, K A., The embedding of annihilating-ideal graphs associated to lattices in the projective plane, Bull. Malays. Math. Sci. Soc., 42(2019), 1625–1638.
  • Wasadikar, M., Survase, P., Lattices, whose incomparability graphs have horns, J Discrete Algorithms, 23(2013), 63–75.
  • Xue, Z., Liu, L., Zero-divisor graphs of partially ordered sets, Appl. math. Lett., 23(2010), 449–452.

On the Essential Element Graph of a Lattice

Yıl 2022, Cilt: 14 Sayı: 2, 248 - 255, 30.12.2022
https://doi.org/10.47000/tjmcs.885881

Öz

Let $\mathcal{L}$ be a bounded lattice. The essential element graph of $\mathcal{L}$ is a simple undirected graph $\varepsilon_{\mathcal{L}}$ such that the elements $x,y$ of $\mathcal{L}$ form an edge in $\varepsilon_{\mathcal{L}}$, whenever $x \vee y $ is an essential element of $\mathcal{L}$. In this paper, we study properties of the essential elements of lattices and essential element graphs. We study the lattices whose zero-divisor graphs and incomparability graphs are isomorphic to its essential element graphs. Moreover, the line essential element graphs are investigated.

Kaynakça

  • Afkhami, M., Barati, Z., Khashyarmanesh, K., Planar zero-divisor graphs of partially ordered sets, Acta Math. Hungar., 137(2012), 27–35.
  • Afkhami, M., Khashyarmanesh, K., The comaximal graph of a lattice, Bull. Malays. Math. Sci. Soc., 37(1)(2014), 261–269.
  • Afkhami, M., Barati Z., Khashyarmanesh, K., A graph associated to a lattice , Ricerche Mat., 63(2014), 67–78.
  • Akbari, S., Alilou, A., Amjadi J., Sheikholeslami, S.M., The co-annihilating-ideal graphs of commutative rings, Canad. Math. Bull., 60(2017), 3–11.
  • Albu, T., Iosif, M., Modular C11 lattices and lattice preradicals, Journal of Algebra and Its Applications, 16(5)(2017), 1–19.
  • Anderson, D.F., Livingston P.S., The zero-divisor graph of commutative ring, J. Algebra, 217(1999), 434–447.
  • Beck, I., Coloring of commutative rings, J. Algebra, 116(1988), 208–226.
  • Beineke, L.W., Characterizations of derived graphs, J. Comb. Theory, 9(1970), 129–135.
  • Chartrand, G., Zhang, P., Chromatic Graph Theory, Chapman and Hall/CRC, 2008, 298p.
  • Chelvam, T.T., Nithya, S., A note on the zero divisor graph of a lattice, Trans. on Combin., 3(3)(2014), 51–59.
  • Curtis, A.R., Diesl, A.J., Rieck, J.C., Classifying annihilating-ideal graphs of commutative artinian rings, Communications in Algebra, 46(9)(2018), 4131–4147.
  • Davey, B.A., Priestly, H.A., Introduction to Lattices and Order, 2nd, Cambridge University Press, 2002, 312p.
  • Das, A.K., Nongsiang, D., On reduced zero-divisor graphs of posets, Journal of Discrete Mathematics, 2015(2015), 1–7.
  • Krithika, R., Mathew, R., Narayanaswamy, N.S., Sadagopan N., A Dirac-type characterization of k-chordal graphs, Discrete Math., 313(2013), 2865–2867.
  • Lu, D., Wu T., The Zero-divisor graphs of posets and an application to semigroups, Graphs and Combinatorics, 26(2010), 793–804.
  • Nimbhorkar, S., Deshmukh, D., The essential element graph of a lattice, Asian-European J of Math., 13(1)(2020), 1–9.
  • Nimbhokar, S.K., Wasadikar, M.P., Pawar, M.M., Coloring of lattices, Math. Slovaca, 60(2010), 419–434.
  • Nimbhokar, S.K., Vidya, S.D., Incomparability graphs of dismantable lattices , Asian-European J of Math., 13(1)(2020), 1–8.
  • Parsapour, A., Javaheri, K A., The embedding of annihilating-ideal graphs associated to lattices in the projective plane, Bull. Malays. Math. Sci. Soc., 42(2019), 1625–1638.
  • Wasadikar, M., Survase, P., Lattices, whose incomparability graphs have horns, J Discrete Algorithms, 23(2013), 63–75.
  • Xue, Z., Liu, L., Zero-divisor graphs of partially ordered sets, Appl. math. Lett., 23(2010), 449–452.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Alper Ülker 0000-0001-5592-7450

Erken Görünüm Tarihi 23 Aralık 2022
Yayımlanma Tarihi 30 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 14 Sayı: 2

Kaynak Göster

APA Ülker, A. (2022). On the Essential Element Graph of a Lattice. Turkish Journal of Mathematics and Computer Science, 14(2), 248-255. https://doi.org/10.47000/tjmcs.885881
AMA Ülker A. On the Essential Element Graph of a Lattice. TJMCS. Aralık 2022;14(2):248-255. doi:10.47000/tjmcs.885881
Chicago Ülker, Alper. “On the Essential Element Graph of a Lattice”. Turkish Journal of Mathematics and Computer Science 14, sy. 2 (Aralık 2022): 248-55. https://doi.org/10.47000/tjmcs.885881.
EndNote Ülker A (01 Aralık 2022) On the Essential Element Graph of a Lattice. Turkish Journal of Mathematics and Computer Science 14 2 248–255.
IEEE A. Ülker, “On the Essential Element Graph of a Lattice”, TJMCS, c. 14, sy. 2, ss. 248–255, 2022, doi: 10.47000/tjmcs.885881.
ISNAD Ülker, Alper. “On the Essential Element Graph of a Lattice”. Turkish Journal of Mathematics and Computer Science 14/2 (Aralık 2022), 248-255. https://doi.org/10.47000/tjmcs.885881.
JAMA Ülker A. On the Essential Element Graph of a Lattice. TJMCS. 2022;14:248–255.
MLA Ülker, Alper. “On the Essential Element Graph of a Lattice”. Turkish Journal of Mathematics and Computer Science, c. 14, sy. 2, 2022, ss. 248-55, doi:10.47000/tjmcs.885881.
Vancouver Ülker A. On the Essential Element Graph of a Lattice. TJMCS. 2022;14(2):248-55.