Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 15 Sayı: 1, 110 - 117, 30.06.2023
https://doi.org/10.47000/tjmcs.1214202

Öz

Kaynakça

  • Anderson, F.W., Fuller, K.R., Rings and Categories of Modules, New York: Springer-Verlag, 1974.
  • Anderson Jr., W.N., Shorted operators, SIAM Journal on Applied Mathematics, 20(3)(1971), 522–525.
  • Anderson, W.N., Trapp, G.E., Shorted operators II, SIAM Journal on Applied Mathematics, 28(1)(1975), 60—71.
  • Djordjevic, D.S., Rakic, D.S., Marovt, J., Minus partial order in Rickart rings, Publ. Math. Debrecen, 87(3-4)(2015), 291–305.
  • Hartwig, R.E., How to partially order regular elements, Math. Japonica,25(1980), 1–13.
  • Jain, S.K., Blackwood, B., Prasad, K.M., Srivastava, A. K., Shorted operators relative to a partial order in a regular ring, Comm. Algebra, 37(11)(2009), 4141–4152.
  • Jain, S.K., Prasad, K.M., Right-left symmetry of aR  bR = (a + b)R in regular rings, J. Pure Appl. Algebra,133(1-2)(1998), 141-–142.
  • Kasch, F., Mader, A., Regularity and Substructures of Hom, Frontiers in Mathematics Basel, Switzerland: Birkh¨auser, 2009.
  • Lee, G., Rizvi, S.T., Roman, C.S., Rickart modules, Comm. Algebra, 38(11)(2010), 4005–4027.
  • Marovt, J., On partial orders in Rickart rings, Linear and Multilinear Algebra, 63(9)(2015), 1707–1723.
  • Mitra, S.K., The minus partial order and shorted matrix, Linear Algebra Appl., 83(1986), 1–27.
  • Mitsch, H., A natural partial order for semigroups, Proc. Am. Math. Soc., 97(3)(1986), 384—388.
  • Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc., 23(3)(1980), 249–260.
  • Quynh, T.C., Abyzov, A., Koşan, M.T., On (unit-)regular morphisms, Lobachevskii Journal of Mathematics, 40(12)(2019), 2103–2110.
  • Quynh, T.C., Koşan, M.T., Hai, P.T., A note on regular morphisms, Ann. Univ. Sci. Budapest. Sect. Comput., 41(2013), 249–260.
  • Quynh, T.C., Koşan, M.T., Thuyet, L.V., On (semi)regular morphisms, Comm. Algebra, 41(8)(2013).
  • Semrl, P., Automorphisms of B(H) with respect to minus partial order, J. Math. Anal. Appl., 369(1)(2010), 205–213.
  • Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., Minus partial order in regular modules, Comm. Algebra, 48(10)(2020), 4542–4553.
  • Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., On properties of the minus partial order in regular modules, Publ. Math. Debrecen, 96(1-2)(2020), 149–159.
  • von Neumann, J., On Regular ring, Proc. Nat. Acad. Sci., 22(12)(1936), 707–713.

The Minus Partial Order on Endomorphism Rings

Yıl 2023, Cilt: 15 Sayı: 1, 110 - 117, 30.06.2023
https://doi.org/10.47000/tjmcs.1214202

Öz

Let $S=End(M)$ be the ring of endomorphisms of a right $R$-module M. In this paper we define the minus parital order for the endomorphism ring of modules. Also, we extend study of minus partial order to the endomorphism ring of a (Rickart) module. Thus several well-known results concerning minus partial order are generalized.

Kaynakça

  • Anderson, F.W., Fuller, K.R., Rings and Categories of Modules, New York: Springer-Verlag, 1974.
  • Anderson Jr., W.N., Shorted operators, SIAM Journal on Applied Mathematics, 20(3)(1971), 522–525.
  • Anderson, W.N., Trapp, G.E., Shorted operators II, SIAM Journal on Applied Mathematics, 28(1)(1975), 60—71.
  • Djordjevic, D.S., Rakic, D.S., Marovt, J., Minus partial order in Rickart rings, Publ. Math. Debrecen, 87(3-4)(2015), 291–305.
  • Hartwig, R.E., How to partially order regular elements, Math. Japonica,25(1980), 1–13.
  • Jain, S.K., Blackwood, B., Prasad, K.M., Srivastava, A. K., Shorted operators relative to a partial order in a regular ring, Comm. Algebra, 37(11)(2009), 4141–4152.
  • Jain, S.K., Prasad, K.M., Right-left symmetry of aR  bR = (a + b)R in regular rings, J. Pure Appl. Algebra,133(1-2)(1998), 141-–142.
  • Kasch, F., Mader, A., Regularity and Substructures of Hom, Frontiers in Mathematics Basel, Switzerland: Birkh¨auser, 2009.
  • Lee, G., Rizvi, S.T., Roman, C.S., Rickart modules, Comm. Algebra, 38(11)(2010), 4005–4027.
  • Marovt, J., On partial orders in Rickart rings, Linear and Multilinear Algebra, 63(9)(2015), 1707–1723.
  • Mitra, S.K., The minus partial order and shorted matrix, Linear Algebra Appl., 83(1986), 1–27.
  • Mitsch, H., A natural partial order for semigroups, Proc. Am. Math. Soc., 97(3)(1986), 384—388.
  • Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc., 23(3)(1980), 249–260.
  • Quynh, T.C., Abyzov, A., Koşan, M.T., On (unit-)regular morphisms, Lobachevskii Journal of Mathematics, 40(12)(2019), 2103–2110.
  • Quynh, T.C., Koşan, M.T., Hai, P.T., A note on regular morphisms, Ann. Univ. Sci. Budapest. Sect. Comput., 41(2013), 249–260.
  • Quynh, T.C., Koşan, M.T., Thuyet, L.V., On (semi)regular morphisms, Comm. Algebra, 41(8)(2013).
  • Semrl, P., Automorphisms of B(H) with respect to minus partial order, J. Math. Anal. Appl., 369(1)(2010), 205–213.
  • Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., Minus partial order in regular modules, Comm. Algebra, 48(10)(2020), 4542–4553.
  • Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., On properties of the minus partial order in regular modules, Publ. Math. Debrecen, 96(1-2)(2020), 149–159.
  • von Neumann, J., On Regular ring, Proc. Nat. Acad. Sci., 22(12)(1936), 707–713.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Tufan Özdin 0000-0001-8081-1871

Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 15 Sayı: 1

Kaynak Göster

APA Özdin, T. (2023). The Minus Partial Order on Endomorphism Rings. Turkish Journal of Mathematics and Computer Science, 15(1), 110-117. https://doi.org/10.47000/tjmcs.1214202
AMA Özdin T. The Minus Partial Order on Endomorphism Rings. TJMCS. Haziran 2023;15(1):110-117. doi:10.47000/tjmcs.1214202
Chicago Özdin, Tufan. “The Minus Partial Order on Endomorphism Rings”. Turkish Journal of Mathematics and Computer Science 15, sy. 1 (Haziran 2023): 110-17. https://doi.org/10.47000/tjmcs.1214202.
EndNote Özdin T (01 Haziran 2023) The Minus Partial Order on Endomorphism Rings. Turkish Journal of Mathematics and Computer Science 15 1 110–117.
IEEE T. Özdin, “The Minus Partial Order on Endomorphism Rings”, TJMCS, c. 15, sy. 1, ss. 110–117, 2023, doi: 10.47000/tjmcs.1214202.
ISNAD Özdin, Tufan. “The Minus Partial Order on Endomorphism Rings”. Turkish Journal of Mathematics and Computer Science 15/1 (Haziran 2023), 110-117. https://doi.org/10.47000/tjmcs.1214202.
JAMA Özdin T. The Minus Partial Order on Endomorphism Rings. TJMCS. 2023;15:110–117.
MLA Özdin, Tufan. “The Minus Partial Order on Endomorphism Rings”. Turkish Journal of Mathematics and Computer Science, c. 15, sy. 1, 2023, ss. 110-7, doi:10.47000/tjmcs.1214202.
Vancouver Özdin T. The Minus Partial Order on Endomorphism Rings. TJMCS. 2023;15(1):110-7.