Suppose that $(M,G)$ be a Riemannian manifold and $f:M\rightarrow \mathbb{R}$ be a submersion. Then, the vertical lift of $f,$ $f^{v}:TM\rightarrow \mathbb{R}$ defined by $f^{v}=f\circ \pi $ is also a submersion. This interesting case, differently from [10], leads us to investigation of the level hypersurfaces of $f^{v}$ in tangent bundle $TM$. In this paper we obtained some differential geometric relations between level hypersurfaces of $f$ and $f^{v}.$ In addition, we noticed that, unlike [13], a level
hypersurface of $f^{v}$ is always lightlike, i.e., it doesn't depend on any additional condition.
Birincil Dil | İngilizce |
---|---|
Konular | Cebirsel ve Diferansiyel Geometri |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Haziran 2024 |
Gönderilme Tarihi | 29 Kasım 2023 |
Kabul Tarihi | 26 Ocak 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 16 Sayı: 1 |