Research Article
BibTex RIS Cite

On Pseudo-cyclic Multipliers in Hilbert Function Spaces

Year 2024, Volume: 16 Issue: 2, 309 - 313, 31.12.2024
https://doi.org/10.47000/tjmcs.1444922

Abstract

Let $\mathcal{H}$ be a separable complete Pick space of continuous functions on a compact set $\Omega$ with multiplier algebra $\mathrm{M}(\mathcal{H})$. The notion of the pseudo-cyclicity is recently defined by Aleman et al. In this short paper, we first extend their definition of the pseudo-cyclic multipliers to all functions $f$ in $\mathcal{H}$. Then we show that whenever one-function corona theorem holds for $\mathrm{M}(\mathcal{H})$ then a function $f$ in $\mathcal{H}$ is in the pseudo-cyclic class $ \mathcal{C}_n(\mathcal{H})$ if and only if $1/f$ is in the corresponding Pick-Smirnov type class $N_n^+(\mathcal{H})$. Furthermore, we show that non-vanishing functions $f \in \mathcal{H}$ are in the class $\mathcal{C}_1(\mathcal{H})$. For functions $\varphi, \psi$ in $\mathrm{M}(\mathcal{H})$, with at least one being in $\mathcal{C}_1(\mathcal{H})$, we also show that the invariant subspace generated by $\varphi \psi$ is equal to the intersection of invariant subspaces generated by $\varphi$ and $ \psi$.

References

  • Agler, J., McCarthy, J.E., Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2002.
  • Aleman, A., Hartz, M., McCarthy, J.E., Richter, S., The Smirnov class for spaces with the complete Pick property, J. Lond. Math. Soc. (2), 96(1)(2017), 228–242.
  • Aleman, A., Hartz, M., McCarthy, J.E., Richter, S., Factorizations induced by complete Nevanlinna-Pick factors, Adv. Math., 335(2018), 372–404.
  • Aleman, A., Perfekt, K.-M., Richter, S., Sundberg, C., Sunkes, J., Cyclicity and iterated logarithms in the drury-arveson space, Preprint at https://arxiv.org/abs/2301.10091, (2023).
  • Aleman, A., Perfekt, K.-M., Richter, S., Sundberg, C., Sunkes, J., Cyclicity in the drury-arveson space and other weighted besov spaces,Preprint at https://arxiv.org/abs/2301.04994, (2023).
  • Beurling, A., On two problems concerning linear transformations in Hilbert space, Acta Math., 81(1949), 239–255.
  • Duren, P., Schuster, A., Bergman Spaces. Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.
  • El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T., A Primer on the Dirichlet Space. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2014.
  • Hartz, M., An Invitation to the Drury–arveson Space. In: Mashreghi, J. (ed.) Lectures on Analytic Function Spaces and Their Applications, Springer, Fields Institute Monographs, 2023.
  • Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Graduate Texts in Mathematics, Springer, New York, 2000.
  • Luo, S., Corona theorem for the Dirichlet-type space, J. Geom. Anal., 32(3)(2022), 74–20.
  • Paulsen, V.I., Raghupathi, M., An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2016.
  • Richter, S., Sundberg, C., Multipliers and invariant subspaces in the Dirichlet space, J. Operator Theory, 28(1) (1992), 167–186.
  • Salas, H.N., A note on strictly cyclic weighted shifts, Proc. Amer. Math. Soc., 83(3)(1981), 555–556.
Year 2024, Volume: 16 Issue: 2, 309 - 313, 31.12.2024
https://doi.org/10.47000/tjmcs.1444922

Abstract

References

  • Agler, J., McCarthy, J.E., Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2002.
  • Aleman, A., Hartz, M., McCarthy, J.E., Richter, S., The Smirnov class for spaces with the complete Pick property, J. Lond. Math. Soc. (2), 96(1)(2017), 228–242.
  • Aleman, A., Hartz, M., McCarthy, J.E., Richter, S., Factorizations induced by complete Nevanlinna-Pick factors, Adv. Math., 335(2018), 372–404.
  • Aleman, A., Perfekt, K.-M., Richter, S., Sundberg, C., Sunkes, J., Cyclicity and iterated logarithms in the drury-arveson space, Preprint at https://arxiv.org/abs/2301.10091, (2023).
  • Aleman, A., Perfekt, K.-M., Richter, S., Sundberg, C., Sunkes, J., Cyclicity in the drury-arveson space and other weighted besov spaces,Preprint at https://arxiv.org/abs/2301.04994, (2023).
  • Beurling, A., On two problems concerning linear transformations in Hilbert space, Acta Math., 81(1949), 239–255.
  • Duren, P., Schuster, A., Bergman Spaces. Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.
  • El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T., A Primer on the Dirichlet Space. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2014.
  • Hartz, M., An Invitation to the Drury–arveson Space. In: Mashreghi, J. (ed.) Lectures on Analytic Function Spaces and Their Applications, Springer, Fields Institute Monographs, 2023.
  • Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Graduate Texts in Mathematics, Springer, New York, 2000.
  • Luo, S., Corona theorem for the Dirichlet-type space, J. Geom. Anal., 32(3)(2022), 74–20.
  • Paulsen, V.I., Raghupathi, M., An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2016.
  • Richter, S., Sundberg, C., Multipliers and invariant subspaces in the Dirichlet space, J. Operator Theory, 28(1) (1992), 167–186.
  • Salas, H.N., A note on strictly cyclic weighted shifts, Proc. Amer. Math. Soc., 83(3)(1981), 555–556.
There are 14 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Faruk Yılmaz 0000-0003-2742-7963

Publication Date December 31, 2024
Submission Date February 29, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Yılmaz, F. (2024). On Pseudo-cyclic Multipliers in Hilbert Function Spaces. Turkish Journal of Mathematics and Computer Science, 16(2), 309-313. https://doi.org/10.47000/tjmcs.1444922
AMA Yılmaz F. On Pseudo-cyclic Multipliers in Hilbert Function Spaces. TJMCS. December 2024;16(2):309-313. doi:10.47000/tjmcs.1444922
Chicago Yılmaz, Faruk. “On Pseudo-Cyclic Multipliers in Hilbert Function Spaces”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 309-13. https://doi.org/10.47000/tjmcs.1444922.
EndNote Yılmaz F (December 1, 2024) On Pseudo-cyclic Multipliers in Hilbert Function Spaces. Turkish Journal of Mathematics and Computer Science 16 2 309–313.
IEEE F. Yılmaz, “On Pseudo-cyclic Multipliers in Hilbert Function Spaces”, TJMCS, vol. 16, no. 2, pp. 309–313, 2024, doi: 10.47000/tjmcs.1444922.
ISNAD Yılmaz, Faruk. “On Pseudo-Cyclic Multipliers in Hilbert Function Spaces”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 309-313. https://doi.org/10.47000/tjmcs.1444922.
JAMA Yılmaz F. On Pseudo-cyclic Multipliers in Hilbert Function Spaces. TJMCS. 2024;16:309–313.
MLA Yılmaz, Faruk. “On Pseudo-Cyclic Multipliers in Hilbert Function Spaces”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 309-13, doi:10.47000/tjmcs.1444922.
Vancouver Yılmaz F. On Pseudo-cyclic Multipliers in Hilbert Function Spaces. TJMCS. 2024;16(2):309-13.