Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 1, 120 - 135, 30.06.2025
https://doi.org/10.47000/tjmcs.1545173

Abstract

References

  • Ali, R.M., Ravichandran, V., Seenivasagan, N., Coefficient bounds for p–valent functions, Appl. Math. Comput., 187(2007), 35–46.
  • Alimohammadi, D., Adegani, E.A., Bulboac˘a, T., Cho, N.E., Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions, J. Funct. Spaces, 2021(2021).
  • Al-Shaqsi, K., Darus, M., On certain subclass of analytic univalent functions with negative coefficients, Appl. Math. Sci., 1(3)(2007), 1121–1128.
  • Al-Shaqsi, K., Darus, M., On subclass of close-to-convex functions, Int. J. Contemporary Math. Sci., 2(15)(2007), 745–757.
  • Al-Shaqsi, K., Darus, M., A multiplier transformation defined by convolution involving nth order polylogarithm functions, Int. Math. Forum, 4(37)(2009), 1823–1837.
  • Altintaş, O., Özkan, Ö., On the classes of starlike and convex functions of complex order, Hacettepe Bull. Nat. Sci. Engg. (Series B), 30(2001), 63–68.
  • Altintaş, O., Irmak, H., Owa, S., Srivastava, H.M., Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett., 20(2007), 1218–1222.
  • Aouf, M.K., Orhan, H., On the Fekete-Szeg¨o problem for a certain class of meromorphic functions using q-derivative operator, Kyungpook Math. J., 58(2)(2018), 307–318.
  • Arif, M., Khan, Q., Sokol, J., A new family of starlike functions in a circular domain involving a q-differential operator, J. Contemporary Math. Anal., 54(6)(2019), 339–346.
  • Babalola, K.O., On coefficient determinants with Fekete-Szeg¨o parameter, Appl. Math. E-Notes, 13(2013), 92–99.
  • Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Stud. Univ. Babes¸-Bolyai Math., 31(2)(1986), 70–77.
  • Bulut, S., Hussain, M., Ghafoor, A., On coefficient bounds of some new subfamilies of close-to-convex functions of complex order related to generalized differential operator, Asian-European J. Math., 13(3)(2020).
  • Bulut, S., Kanas, S., Goswami, P., New trends on analytic function theory, J. Complex Anal., 2019(2019).
  • Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J., The bounds of some determinants for starlike functions of order Alpha, Bull. Malaysian Math. Sci. Soc., 41(1)(2018), 523–535.
  • Darus, M., Al-Shaqsi, K., On harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator, Lobachevskii J. Math., 22(2006), 19–26.
  • de-Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154(1-2)(1985), 137–152.
  • Dubinin, V.N., Methods of geometric function theory in classical and modern problems for polynomials, Russian Math. Survey, 67(4)(2012), 599–684.
  • El-Ashwah, R.M., Aouf, M.K., Hassan, A., Hassan, A., Certain class of analytic functions defined by Ruscheweyh derivative with varying arguments, Kyungpook Math. J., 54(3)(2014), 453–461.
  • Frasin, B.A., Swamy, S.R., Wanas, A.K., Subclasses of starlike and convex functions associated with Pascal distribution series, Kyungpook Math. J., 61(1)(2021), 99–110.
  • Goodman, A.W., Univalent Functions, Vol. I & II, Mariner, Tampa, Florida, 1983.
  • Hayman,W.K., Lingham, E.F., Research Problems in Function Theory, Fiftieth Anniversary Edition, Problem Books in Mathematics, Springer, 2019.
  • Hussain, M., Application of the Srivastav–Owa fractional calculus operator to Janowski spiral–like functions of complex order, Punjab University J. Math., 50(2)(2018), 33–43.
  • Hussain, M., A new subfamily of starlike functions of complex order using Srivastava–Owa fractional operator, Punjab University J. Math., 51(9)(2019), 101–109.
  • Khatter, K., Lee, S.K., Kumar, S.S., Coefficient bounds for certain analytic functions, Bull. Malaysian Math. Sci. Soc., 41(1)(2018), 455–490.
  • Luo, H., Xu, Q., On the Fekete and Szeg¨o inequality for a subclass of strongly starlike mappings of order α, Results in Mathematics, 72(1-2)(2017), 343–357.
  • Nasr, M.A., Aouf, M.K., Starlike functions of complex order, J. Nat. Sci. Math., 25(1985), 1–12.
  • Noor, K.I., Arif, M., On some applications of Ruscheweyh derivative, Comput. Math. Appl., 62(12)(2011), 4726–4732.
  • Noor, K.I., Murtaza, R., Sok´ol, J., Some new subclasses of analytic functions defined by Srivastava-Owa-Ruscheweyh fractional derivative operator, Kyungpook Math. J., 57(1)(2017), 109–124.
  • Rogosinski, W., On the coefficients of subordinate functions, Proceedings London Math. Soc. (Series 1), 48(1943), 48–82.
  • Ruscheweyh, S., A new criteria for univalent function, Proceedings American Math. Soc., 49(1)(1975), 109–115.
  • Singh, S., Singh, S., Integrals of certain univalent functions, Proceedings American Math. Soc., 77(3)(1979), 336–340.
  • Srivastava, H.M., Altntas¸, O., Serenbay, S.K., Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett., 24(2011), 1359–1363.
  • Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
  • Wang, Z.-H., Hussain, M., Wang, X.-Y., On sharp solutions to majorization and Fekete-Szeg¨o problems for normalized starlike analytic functions, Miskolc Math. Notes, 24(2)(2023), 1003–1019.
  • Wiatrowski, P., On the coefficient of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lodz Nauk. Mat.-Przyrod, 39(2)(1970), 75–85.
  • Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math., 15(5)(2011), 2377–2386.
  • Zaprawa, P., On Hankel determinant H2(3) for univalent functions, Results in Mathematics, 73(2018), 1–12.

Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated with the Ruscheweyh Derivative and Differential Equation

Year 2025, Volume: 17 Issue: 1, 120 - 135, 30.06.2025
https://doi.org/10.47000/tjmcs.1545173

Abstract

In this article, we introduced some new subfamilies of analytic mappings of complex order defined
by using the Ruscheweyh derivative and a family of non-homogenous Cauchy-Euler differential equations. We estimated the nth coefficient bounds and Fekete-Szeg¨o-type functional for functions in these subfamilies. The obtained results were then used in estimation of upper bounds on coefficients of logarithmic, bi-univalent, and second Hankel determinant for such functions. Various useful deductions relevant to recent results in the literature were made with some refinements of known results.

References

  • Ali, R.M., Ravichandran, V., Seenivasagan, N., Coefficient bounds for p–valent functions, Appl. Math. Comput., 187(2007), 35–46.
  • Alimohammadi, D., Adegani, E.A., Bulboac˘a, T., Cho, N.E., Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions, J. Funct. Spaces, 2021(2021).
  • Al-Shaqsi, K., Darus, M., On certain subclass of analytic univalent functions with negative coefficients, Appl. Math. Sci., 1(3)(2007), 1121–1128.
  • Al-Shaqsi, K., Darus, M., On subclass of close-to-convex functions, Int. J. Contemporary Math. Sci., 2(15)(2007), 745–757.
  • Al-Shaqsi, K., Darus, M., A multiplier transformation defined by convolution involving nth order polylogarithm functions, Int. Math. Forum, 4(37)(2009), 1823–1837.
  • Altintaş, O., Özkan, Ö., On the classes of starlike and convex functions of complex order, Hacettepe Bull. Nat. Sci. Engg. (Series B), 30(2001), 63–68.
  • Altintaş, O., Irmak, H., Owa, S., Srivastava, H.M., Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett., 20(2007), 1218–1222.
  • Aouf, M.K., Orhan, H., On the Fekete-Szeg¨o problem for a certain class of meromorphic functions using q-derivative operator, Kyungpook Math. J., 58(2)(2018), 307–318.
  • Arif, M., Khan, Q., Sokol, J., A new family of starlike functions in a circular domain involving a q-differential operator, J. Contemporary Math. Anal., 54(6)(2019), 339–346.
  • Babalola, K.O., On coefficient determinants with Fekete-Szeg¨o parameter, Appl. Math. E-Notes, 13(2013), 92–99.
  • Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Stud. Univ. Babes¸-Bolyai Math., 31(2)(1986), 70–77.
  • Bulut, S., Hussain, M., Ghafoor, A., On coefficient bounds of some new subfamilies of close-to-convex functions of complex order related to generalized differential operator, Asian-European J. Math., 13(3)(2020).
  • Bulut, S., Kanas, S., Goswami, P., New trends on analytic function theory, J. Complex Anal., 2019(2019).
  • Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J., The bounds of some determinants for starlike functions of order Alpha, Bull. Malaysian Math. Sci. Soc., 41(1)(2018), 523–535.
  • Darus, M., Al-Shaqsi, K., On harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator, Lobachevskii J. Math., 22(2006), 19–26.
  • de-Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154(1-2)(1985), 137–152.
  • Dubinin, V.N., Methods of geometric function theory in classical and modern problems for polynomials, Russian Math. Survey, 67(4)(2012), 599–684.
  • El-Ashwah, R.M., Aouf, M.K., Hassan, A., Hassan, A., Certain class of analytic functions defined by Ruscheweyh derivative with varying arguments, Kyungpook Math. J., 54(3)(2014), 453–461.
  • Frasin, B.A., Swamy, S.R., Wanas, A.K., Subclasses of starlike and convex functions associated with Pascal distribution series, Kyungpook Math. J., 61(1)(2021), 99–110.
  • Goodman, A.W., Univalent Functions, Vol. I & II, Mariner, Tampa, Florida, 1983.
  • Hayman,W.K., Lingham, E.F., Research Problems in Function Theory, Fiftieth Anniversary Edition, Problem Books in Mathematics, Springer, 2019.
  • Hussain, M., Application of the Srivastav–Owa fractional calculus operator to Janowski spiral–like functions of complex order, Punjab University J. Math., 50(2)(2018), 33–43.
  • Hussain, M., A new subfamily of starlike functions of complex order using Srivastava–Owa fractional operator, Punjab University J. Math., 51(9)(2019), 101–109.
  • Khatter, K., Lee, S.K., Kumar, S.S., Coefficient bounds for certain analytic functions, Bull. Malaysian Math. Sci. Soc., 41(1)(2018), 455–490.
  • Luo, H., Xu, Q., On the Fekete and Szeg¨o inequality for a subclass of strongly starlike mappings of order α, Results in Mathematics, 72(1-2)(2017), 343–357.
  • Nasr, M.A., Aouf, M.K., Starlike functions of complex order, J. Nat. Sci. Math., 25(1985), 1–12.
  • Noor, K.I., Arif, M., On some applications of Ruscheweyh derivative, Comput. Math. Appl., 62(12)(2011), 4726–4732.
  • Noor, K.I., Murtaza, R., Sok´ol, J., Some new subclasses of analytic functions defined by Srivastava-Owa-Ruscheweyh fractional derivative operator, Kyungpook Math. J., 57(1)(2017), 109–124.
  • Rogosinski, W., On the coefficients of subordinate functions, Proceedings London Math. Soc. (Series 1), 48(1943), 48–82.
  • Ruscheweyh, S., A new criteria for univalent function, Proceedings American Math. Soc., 49(1)(1975), 109–115.
  • Singh, S., Singh, S., Integrals of certain univalent functions, Proceedings American Math. Soc., 77(3)(1979), 336–340.
  • Srivastava, H.M., Altntas¸, O., Serenbay, S.K., Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett., 24(2011), 1359–1363.
  • Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
  • Wang, Z.-H., Hussain, M., Wang, X.-Y., On sharp solutions to majorization and Fekete-Szeg¨o problems for normalized starlike analytic functions, Miskolc Math. Notes, 24(2)(2023), 1003–1019.
  • Wiatrowski, P., On the coefficient of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lodz Nauk. Mat.-Przyrod, 39(2)(1970), 75–85.
  • Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math., 15(5)(2011), 2377–2386.
  • Zaprawa, P., On Hankel determinant H2(3) for univalent functions, Results in Mathematics, 73(2018), 1–12.
There are 37 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Articles
Authors

Manzoor Hussain 0000-0001-6014-9630

Publication Date June 30, 2025
Submission Date September 7, 2024
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Hussain, M. (2025). Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated with the Ruscheweyh Derivative and Differential Equation. Turkish Journal of Mathematics and Computer Science, 17(1), 120-135. https://doi.org/10.47000/tjmcs.1545173
AMA Hussain M. Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated with the Ruscheweyh Derivative and Differential Equation. TJMCS. June 2025;17(1):120-135. doi:10.47000/tjmcs.1545173
Chicago Hussain, Manzoor. “Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated With the Ruscheweyh Derivative and Differential Equation”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 120-35. https://doi.org/10.47000/tjmcs.1545173.
EndNote Hussain M (June 1, 2025) Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated with the Ruscheweyh Derivative and Differential Equation. Turkish Journal of Mathematics and Computer Science 17 1 120–135.
IEEE M. Hussain, “Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated with the Ruscheweyh Derivative and Differential Equation”, TJMCS, vol. 17, no. 1, pp. 120–135, 2025, doi: 10.47000/tjmcs.1545173.
ISNAD Hussain, Manzoor. “Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated With the Ruscheweyh Derivative and Differential Equation”. Turkish Journal of Mathematics and Computer Science 17/1 (June2025), 120-135. https://doi.org/10.47000/tjmcs.1545173.
JAMA Hussain M. Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated with the Ruscheweyh Derivative and Differential Equation. TJMCS. 2025;17:120–135.
MLA Hussain, Manzoor. “Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated With the Ruscheweyh Derivative and Differential Equation”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 120-35, doi:10.47000/tjmcs.1545173.
Vancouver Hussain M. Coefficient Bounds for Subfamilies of Analytic Mappings of Complex Order Associated with the Ruscheweyh Derivative and Differential Equation. TJMCS. 2025;17(1):120-35.