Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 1, 75 - 81, 30.06.2025
https://doi.org/10.47000/tjmcs.1675857

Abstract

References

  • Chen, H., Sheibani, M., Strongly weakly nil-clean rings, J. Algebra Appl., 16(12)(2017).
  • Cui, J., Chen, J., Characterizations of quasipolar rings, Commun. Algebra, 41(2013), 3207–3217.
  • Danchev, P.V., Lam, T.Y., Rings with unipotent units, Publ. Math. (Debrecen), 88(3-4)(2016), 449–466.
  • Danchev, P.V., Weakly UU rings, Tsukuba J. Math., 40(1)(2016), 101–118.
  • Danchev, P.V., Javan, A., Hasanzadeh, O., Moussavi, A., Rings with u − 1 quasinilpotent for each unit u, J. Algebra Appl.
  • Harte, R.E., On quasinilpotents in rings, Panam. Math. J., 1(1991), 10–16.
  • Karabacak, F., Koşan, M.T., Quynh, T.C., Tai, D.D., A generalization of UJ-rings, J. Algebra Appl., 20(2021).
  • Kos¸an, T., Wang, Z., Zhou, Y., Nil-clean and strongly nil-clean rings, Journal of Pure and Applied Algebra, 220(2)(2016), 633–646.
  • Lam, T.Y., A First Course in Noncommutative Rings, New York, NY, USA: Springer-Verlag, 1991.
  • Tien, N.Q., Koşan, M.T., Quynh, T.C., Remarks on rings with u − 1 quasi-nilpotent for each unit u, J. Algebra Appl., (2025).

Rings in Which Every Quasi-nilpotent Element is Nilpotent

Year 2025, Volume: 17 Issue: 1, 75 - 81, 30.06.2025
https://doi.org/10.47000/tjmcs.1675857

Abstract

A ring \( R \) is called a QN-ring if \( R \) satisfies the equation \( Q(R) = N(R) \). In this paper, we present some fundamental properties of the class of QN-rings. It is shown that for \( R \) being a 2-primal (nil-semicommutative) ring, \( R \) is a QN-ring if and only if \( Q(R) \) is a nil ideal; if \( R \) is a QN-ring, then \( R/J(R) \) is a semiprime ring; if \( R \) is a QN-ring and \( R/J(R) \) is nil-semicommutative, then \( R \) is a feckly reduced ring. We also show that if $T_n(R, \alpha)$ is a QN-ring, then $R$ is a QN-ring.

References

  • Chen, H., Sheibani, M., Strongly weakly nil-clean rings, J. Algebra Appl., 16(12)(2017).
  • Cui, J., Chen, J., Characterizations of quasipolar rings, Commun. Algebra, 41(2013), 3207–3217.
  • Danchev, P.V., Lam, T.Y., Rings with unipotent units, Publ. Math. (Debrecen), 88(3-4)(2016), 449–466.
  • Danchev, P.V., Weakly UU rings, Tsukuba J. Math., 40(1)(2016), 101–118.
  • Danchev, P.V., Javan, A., Hasanzadeh, O., Moussavi, A., Rings with u − 1 quasinilpotent for each unit u, J. Algebra Appl.
  • Harte, R.E., On quasinilpotents in rings, Panam. Math. J., 1(1991), 10–16.
  • Karabacak, F., Koşan, M.T., Quynh, T.C., Tai, D.D., A generalization of UJ-rings, J. Algebra Appl., 20(2021).
  • Kos¸an, T., Wang, Z., Zhou, Y., Nil-clean and strongly nil-clean rings, Journal of Pure and Applied Algebra, 220(2)(2016), 633–646.
  • Lam, T.Y., A First Course in Noncommutative Rings, New York, NY, USA: Springer-Verlag, 1991.
  • Tien, N.Q., Koşan, M.T., Quynh, T.C., Remarks on rings with u − 1 quasi-nilpotent for each unit u, J. Algebra Appl., (2025).
There are 10 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Tin Phan Hong 0009-0008-1397-2358

Publication Date June 30, 2025
Submission Date April 14, 2025
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Phan Hong, T. (2025). Rings in Which Every Quasi-nilpotent Element is Nilpotent. Turkish Journal of Mathematics and Computer Science, 17(1), 75-81. https://doi.org/10.47000/tjmcs.1675857
AMA Phan Hong T. Rings in Which Every Quasi-nilpotent Element is Nilpotent. TJMCS. June 2025;17(1):75-81. doi:10.47000/tjmcs.1675857
Chicago Phan Hong, Tin. “Rings in Which Every Quasi-Nilpotent Element Is Nilpotent”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 75-81. https://doi.org/10.47000/tjmcs.1675857.
EndNote Phan Hong T (June 1, 2025) Rings in Which Every Quasi-nilpotent Element is Nilpotent. Turkish Journal of Mathematics and Computer Science 17 1 75–81.
IEEE T. Phan Hong, “Rings in Which Every Quasi-nilpotent Element is Nilpotent”, TJMCS, vol. 17, no. 1, pp. 75–81, 2025, doi: 10.47000/tjmcs.1675857.
ISNAD Phan Hong, Tin. “Rings in Which Every Quasi-Nilpotent Element Is Nilpotent”. Turkish Journal of Mathematics and Computer Science 17/1 (June2025), 75-81. https://doi.org/10.47000/tjmcs.1675857.
JAMA Phan Hong T. Rings in Which Every Quasi-nilpotent Element is Nilpotent. TJMCS. 2025;17:75–81.
MLA Phan Hong, Tin. “Rings in Which Every Quasi-Nilpotent Element Is Nilpotent”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 75-81, doi:10.47000/tjmcs.1675857.
Vancouver Phan Hong T. Rings in Which Every Quasi-nilpotent Element is Nilpotent. TJMCS. 2025;17(1):75-81.