Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 1 - 9, 20.03.2022
https://doi.org/10.55525/tjst.889892

Öz

Kaynakça

  • [1] David DeVon et Timothy Bretl, “Kinematic and Dynamic Control of a Wheeled Mobile Robot”, Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems San Diego, CA, USA, Oct 29 - Nov 2, 2007.
  • [2] F. Pin, and J.C. Culioli, “Optimal Positioning of Combined Mobile Platform-Manipulator Systems for Material Handling Tasks”, Journal of Intelligent & Robotic Systems, Vol. 6, 1992, pp. 165-182.
  • [3] Dong Hun Shin et Kyung Hoon Park, “Velocity kinematic modeling for wheeled mobile robot” , IEEE International Conference on Robotics and Automation, Proceedings 2001 ICRA Volume 4; 21-26 May 2001.
  • [4] W. F. Carriker, P. K. Khosla, and B.H. Krogh, “Path Planningfor Mobile Manipulators for Multiple Tasks Execution”, IEEE Transactions on Robotics and Automation, Vol. 7, No. 3, 1991,pp. 403-408.
  • [5] B. Bayle, J.-Y. Fourquet, et M. Renaud. « Génération des mouvements des manipulateurs mobiles : état de l'Art et perspectives ». JESA. Vol. 35. No. 6.pp. 809-845, 2001.
  • [6] Yoshio Yarnarnoto . Coordinated Control of a Mobile Manipulator. GRASP Laboratory Department of Mechanical Engineering and Applied Mechanics School of Engineering and Applied Science University of Pennsylvania, march 3, 1994.
  • [7] N. Hootsmanns, S. Dubowsky. The motion control of manipulators on mobile vehicles. In Proceedings of IEEE In-ternational Conference on Robotics and Automatics, IEEE,Sacramento, USA, vol. 3, pp. 2336{2341, 1991.
  • [8] E. Padopoulos, J. Poulakakis. Planning and model-based control for mobile manipulators.In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Takamatsu,J
  • [9] Sarkar N, Yun X. and Kumar V., “Control of Mechanical Systems with Rolling Constraints: Application to Dynamic Control of Mobile Robots,”Int. J. Robotics Research, Vol. 13, No. 1, February 1994, pp. 55-69.apan, 2000.
  • [10] G. White. Simultaneous Motion and Interaction Force Control of a Nonholonomic Mobile Manipulator, Ph. D. dissertation, University of New York at Bu®alo, USA, 2006.
  • [11] Y. Guo, P. Y. Woo. Adaptive fuzzy sliding mode control for robotic manipulators. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE, Maui, USA, vol. 3, pp. 2174{2179, 2003.
  • [12] A. Petitti, A. Franchi, D. Di Paola, and A. Rizzo, “Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators,” in 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, May 2016, pp. 441–446.
  • [13] T. Lee, “Robust adaptive attitude tracking on SO (3) with an application to a quadrotor uav,” IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1924–1930, 2013.
  • [14] Y.-H. Liu and S. Arimoto, “Decentralized Adaptive and Non-adaptive Position/Force Controllers for Redundant Manipulators in Cooperation,” The International Journal of Robotics Research, vol. 17, no. 3,pp. 232–247, Mar 1998.
  • [15] G Dai, Y Liu (2016) Coordination distribuée et contrôle de coopération pour les manipulateurs mobiles en réseau. Transactions IEEE sur l'électronique industrielle 64: 5065-5074.
  • [16] N Chen, F Song, G Li, X Sun, C Ai (2013) Un contrôle de recul en mode glissant daptif pour manipulateur mobile avec des contraintes non holonomiques. Commun Nonlinear Sci Numer Simulat 18: 2885-2899.
  • [17] J Wen, D Bayard (1998) Nouvelle classe de lois de contrôle pour les manipulateurs robotiques. partie 1. cas non adaptatif. Int J Control 47: 1361-1385.

Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking

Yıl 2022, , 1 - 9, 20.03.2022
https://doi.org/10.55525/tjst.889892

Öz

The use of robotic systems has now become almost necessary in various fields. Of which, the realization of any hard or dangerous place requiring an implication of manipulation and locomotion, is necessarily entrusted to a mobile manipulator. In this work, we present a control approach that ensures the stability of the system, based on the linearization of feedback. We have determined the kinematic and dynamic models in order to apply the control with a high degree of accuracy. The approach is validated by simulation tests.

Kaynakça

  • [1] David DeVon et Timothy Bretl, “Kinematic and Dynamic Control of a Wheeled Mobile Robot”, Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems San Diego, CA, USA, Oct 29 - Nov 2, 2007.
  • [2] F. Pin, and J.C. Culioli, “Optimal Positioning of Combined Mobile Platform-Manipulator Systems for Material Handling Tasks”, Journal of Intelligent & Robotic Systems, Vol. 6, 1992, pp. 165-182.
  • [3] Dong Hun Shin et Kyung Hoon Park, “Velocity kinematic modeling for wheeled mobile robot” , IEEE International Conference on Robotics and Automation, Proceedings 2001 ICRA Volume 4; 21-26 May 2001.
  • [4] W. F. Carriker, P. K. Khosla, and B.H. Krogh, “Path Planningfor Mobile Manipulators for Multiple Tasks Execution”, IEEE Transactions on Robotics and Automation, Vol. 7, No. 3, 1991,pp. 403-408.
  • [5] B. Bayle, J.-Y. Fourquet, et M. Renaud. « Génération des mouvements des manipulateurs mobiles : état de l'Art et perspectives ». JESA. Vol. 35. No. 6.pp. 809-845, 2001.
  • [6] Yoshio Yarnarnoto . Coordinated Control of a Mobile Manipulator. GRASP Laboratory Department of Mechanical Engineering and Applied Mechanics School of Engineering and Applied Science University of Pennsylvania, march 3, 1994.
  • [7] N. Hootsmanns, S. Dubowsky. The motion control of manipulators on mobile vehicles. In Proceedings of IEEE In-ternational Conference on Robotics and Automatics, IEEE,Sacramento, USA, vol. 3, pp. 2336{2341, 1991.
  • [8] E. Padopoulos, J. Poulakakis. Planning and model-based control for mobile manipulators.In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Takamatsu,J
  • [9] Sarkar N, Yun X. and Kumar V., “Control of Mechanical Systems with Rolling Constraints: Application to Dynamic Control of Mobile Robots,”Int. J. Robotics Research, Vol. 13, No. 1, February 1994, pp. 55-69.apan, 2000.
  • [10] G. White. Simultaneous Motion and Interaction Force Control of a Nonholonomic Mobile Manipulator, Ph. D. dissertation, University of New York at Bu®alo, USA, 2006.
  • [11] Y. Guo, P. Y. Woo. Adaptive fuzzy sliding mode control for robotic manipulators. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE, Maui, USA, vol. 3, pp. 2174{2179, 2003.
  • [12] A. Petitti, A. Franchi, D. Di Paola, and A. Rizzo, “Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators,” in 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, May 2016, pp. 441–446.
  • [13] T. Lee, “Robust adaptive attitude tracking on SO (3) with an application to a quadrotor uav,” IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1924–1930, 2013.
  • [14] Y.-H. Liu and S. Arimoto, “Decentralized Adaptive and Non-adaptive Position/Force Controllers for Redundant Manipulators in Cooperation,” The International Journal of Robotics Research, vol. 17, no. 3,pp. 232–247, Mar 1998.
  • [15] G Dai, Y Liu (2016) Coordination distribuée et contrôle de coopération pour les manipulateurs mobiles en réseau. Transactions IEEE sur l'électronique industrielle 64: 5065-5074.
  • [16] N Chen, F Song, G Li, X Sun, C Ai (2013) Un contrôle de recul en mode glissant daptif pour manipulateur mobile avec des contraintes non holonomiques. Commun Nonlinear Sci Numer Simulat 18: 2885-2899.
  • [17] J Wen, D Bayard (1998) Nouvelle classe de lois de contrôle pour les manipulateurs robotiques. partie 1. cas non adaptatif. Int J Control 47: 1361-1385.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm TJST
Yazarlar

Samir Iknı 0000-0001-8882-1062

Abdelyazid Achour Bu kişi benim 0000-0002-1528-0522

Yayımlanma Tarihi 20 Mart 2022
Gönderilme Tarihi 7 Nisan 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Iknı, S., & Achour, A. (2022). Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking. Turkish Journal of Science and Technology, 17(1), 1-9. https://doi.org/10.55525/tjst.889892
AMA Iknı S, Achour A. Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking. TJST. Mart 2022;17(1):1-9. doi:10.55525/tjst.889892
Chicago Iknı, Samir, ve Abdelyazid Achour. “Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking”. Turkish Journal of Science and Technology 17, sy. 1 (Mart 2022): 1-9. https://doi.org/10.55525/tjst.889892.
EndNote Iknı S, Achour A (01 Mart 2022) Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking. Turkish Journal of Science and Technology 17 1 1–9.
IEEE S. Iknı ve A. Achour, “Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking”, TJST, c. 17, sy. 1, ss. 1–9, 2022, doi: 10.55525/tjst.889892.
ISNAD Iknı, Samir - Achour, Abdelyazid. “Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking”. Turkish Journal of Science and Technology 17/1 (Mart 2022), 1-9. https://doi.org/10.55525/tjst.889892.
JAMA Iknı S, Achour A. Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking. TJST. 2022;17:1–9.
MLA Iknı, Samir ve Abdelyazid Achour. “Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking”. Turkish Journal of Science and Technology, c. 17, sy. 1, 2022, ss. 1-9, doi:10.55525/tjst.889892.
Vancouver Iknı S, Achour A. Control Based on Feedback Linearization of a Mobile Manipulator Robot for Trajectory Tracking. TJST. 2022;17(1):1-9.