Perilen Diimid Türevlerinin Uyarılmış Hal Özelliklerine İmid İkamelerinin Etkisi
Year 2022,
Volume: 17 Issue: 1, 11 - 21, 20.03.2022
Erkan Aksoy
,
Andrew Danos
Chunyong Li
Andrew Monkman
Canan Varlıklı
Abstract
Fluoresant malzemelerin katı hal optik özellikleri organik ışık yayan diyotlar, frekans dönüştürücü veya ışıyan güneş yoğunlaştırıcıları gibi birçok optik ve elektronik fotonik aygıtlar için önemlidir. Perilen diimidler (PDIs) bu fotonik aygıt uygulamalarında yer bulan en popüler organik yarı iletkenlerden birini temsil etmektedir. Bu çalışmada, biri dallı alkil zinciri (2-etilheksil, 2-EH) diğeri aromatik (diizopropilfenil, DIA) yer değiştirebilen grup içeren iki dibromlu PDI'nin (DiBrPDIs) fotofiziksel özellikleri karşılaştırmalı olarak incelenmiştir. Soğurma ve fotolüminesans (PL), yaşam ömürü ve fotolüminesans kuantum veriminin (PLQY) yanı sıra, foto-uyarımlı absorpsiyon özellikleri de (PIA) fs-geçici soğurma spektroskopisi ile incelenmiştir. Aynı π konjuge sistemleri nedeniyle, DiBrPDI-DIA ve DiBrPDI-2EH, çözelti fazında (λabs:527 nm ve λPL:552 nm) özdeş soğurma ve PL davranışlarına sahiptir. Ancak, aynı koşullarda hazırlanan filmlerde DiBrPDI-DIA (λPL-DIA:596 nm; PLQY:73.4%), DiBrPDI-2EH'den (λPL-2EH:649 nm; PLQY:36.7%) daha yüksek bir PLQY ile daha kısa dalgaboyunda bir PL spektruma sahiptir. Chem3D pro yazılımı kullanılarak gerçekleştirilen 3 boyutlu hesaplamalar, bu durumun hacimli DIA grupların perilen halkaları arasındaki mesafeyi artırmasından kaynakladığını göstermiştir.
Project Number
BIDEB-2214-A (Appl. # 1059B141800476) ve TUBITAK #119F031
References
- [1] M. Mosca, F. Caruso, L. Zambito, R. Macaluso, C. Cali, E. Feltin, Hybrid LEDs pave way to new lighting applications, Photonics Spectra 2013; 47, 60–64.
- [2] M. Mosca, F. Caruso, L. Zambito, B. Seminara, R. Macaluso, C. Calì, et al., Warm white LED light by frequency down-conversion of mixed yellow and red Lumogen, in: Integr. Photonics Mater. Devices, Appl. II 2013: 87670L.
- [3] F. Caruso, M. Mosca, R. MacAluso, E. Feltin, C. Calì, Generation of white LED light by frequency downconversion using perylene-based dye, Electron. Lett 2012; 48, 1417–1419.
- [4] E. Aksoy, N. Demir, C. Varlikli, White LED light production using dibromoperylene derivatives in down conversion of energy, Can. J. Phys 2018; 96 (7), 734–739.
- [5] F. Galeotti, W. Mróz, M. Catellani, B. Kutrzeba-Kotowska, E. Kozma, Tailorable perylene-loaded fluorescent nanostructures: A multifaceted approach enabling their application in white hybrid LEDs, J. Mater. Chem. C 2016; 4 5407–5415.
- [6] S. a. Ruetten, J.K. Thomas, Fluorescence and triplet quantum yields of arenes on surfaces, J. Phys. Chem. B 1998; 102, 598–606.
- [7] M. Mosca, R. Macaluso, I. Crupi, Hybrid Inorganic‐Organic White Light Emitting Diodes, Polym. Light. Devices Displays., Book Editors; Inamuddin, R. Boddula, M. I. Ahamed, A. M. Asiri, Wiley, 2020; 197–262.
- [8] H. Langhals, Cyclic carboxylic imide structures as structure elements of high stability. Novel developments in perylene dye chemistry, Heterocycles 1995; 40, 477–500.
- [9] L. Chen, C. Li, K. Müllen, Beyond perylene diimides: Synthesis, assembly and function of higher rylene chromophores, J. Mater. Chem. C 2014; 2, 1938–1956.
- [10] T. Guner, E. Aksoy, M.M. Demir, C. Varlikli, Perylene-embedded electrospun PS fibers for white light generation, Dye. Pigment 2019; 160, 501–508.
- [11] C. Li, H. Wonneberger, Perylene imides for organic photovoltaics: Yesterday, today, and tomorrow, Adv. Mater 2012; 24, 613–636.
- [12] F. Würthner, C.R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials, Chem. Rev 2016; 116, 962–1052.
- [13] V. Bozkus, E. Aksoy, C. Varlikli, Perylene based solution processed single layer woled with adjustable CCT and CRI, Electron 2021; 10, 1–12.
- [14] E. Aksoy, A. Danos, C. Li, A.P. Monkman, C. Varlikli, Silylethynyl Substitution for Preventing Aggregate Formation in Perylene Diimides, J. Phys. Chem. C 2021; in press.
- [15] M. Kus, Ö. Hakli, C. Zafer, C. Varlikli, S. Demic, S. Özçelik, et al., Optical and electrochemical properties of polyether derivatives of perylenediimides adsorbed on nanocrystalline metal oxide films, Org. Electron 2008; 9, 757–766.
- [16] C. Karapire, M. Kus, G. Turkmen, C.C. Trevithick-Sutton, C.S. Foote, S. Icli, Photooxidation studies with perylenediimides in solution, PVC and sol-gel thin films under concentrated sun light, Sol. Energy 2005; 78, 5–17.
- [17] C. Karapire, C. Zafer, S. Içli, Studies on photophysical and electrochemical properties of synthesized hydroxy perylenediimides in nanostructured titania thin films, Synth. Met 2004; 145, 51–60.
- [18] J. Li, S. Yuan, J.S. Qin, L. Huang, R. Bose, J. Pang, et al., Fluorescence Enhancement in the Solid State by Isolating Perylene Fluorophores in Metal-Organic Frameworks, ACS Appl. Mater. Interfaces 2020; 12, 26727–26732.
- [19] Y. Zhang, B. He, J. Liu, S. Hu, L. Pan, Z. Zhao, et al., Aggregation-induced emission and the working mechanism of 1-benzoyl and 1-benzyl pyrene derivatives, Phys. Chem. Chem. Phys 2018, 20, 9922–9929.
- [20] M. Stolte, T. Schembri, J. Süß, D. Schmidt, A.M. Krause, M.O. Vysotsky, et al., 1-Mono- And 1,7-Disubstituted Perylene Bisimide Dyes with Voluminous Groups at Bay Positions- And Search for Highly Effective Solid-State Fluorescence Materials, Chem. Mater 2020; 32, 6222–6236.
- [21] S.K. Mohan Nalluri, J. Zhou, T. Cheng, Z. Liu, M.T. Nguyen, T. Chen, et al., Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State, J. Am. Chem. Soc 2019, 141, 1290–1303.
- [22] E. Aksoy, A. Danos, C. Varlikli, A.P. Monkman, Navigating CIE Space for Efficient TADF Downconversion WOLEDs, Dye. Pigment 2020, 183, 108707.
- [23] D. Schmidt, M. Stolte, S. Jasmin, A. Liess, V. Stepanenko, F. Würthner, Protein-like Enwrapped Perylene Bisimide Chromophore as a Bright Microcrystalline Emitter Material, Angew. Chemie - Int. Ed 2019; 58, 13385–13389.
- [24] B. Zhang, H. Soleimaninejad, D.J. Jones, J.M. White, K.P. Ghiggino, T. a. Smith, et al., Highly fluorescent molecularly insulated perylene diimides: Effect of concentration on photophysical properties, Chem. Mater 2017; 29, 8395–8403.
- [25] R. Muñoz-Mármol, P.G. Boj, J.M. Villalvilla, J. a. Quintana, N. Zink-Lorre, Á. Sastre-Santos, et al., Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes, J. Phys. Chem. C 2021; in press.
- [26] F. Kong, M. Lin, T. Qiu, The effect of imide substituents on the optical properties of perylene diimide derivatives, Luminescence 2018; 33, 1209–1216.
- [27] Q.U. Khan, G. Tian, L. Bao, S. Qi, D. Wu, Highly uniform supramolecular nano-films derived from carbazole-containing perylene diimide: Via surface-supported self-assembly and their electrically bistable memory behavior, New J. Chem 2018; 42, 11506–11515.
- [28] S. Chen, Y. Liu, W. Qiu, X. Sun, Y. Ma, D. Zhu, Oligothiophene-functionalized perylene bisimide system: Synthesis, characterization, and electrochemical polymerization properties, Chem. Mater 2005; 17, 2208–2215.
- [29] P. Rajasingh, R. Cohen, E. Shirman, L.J.W. Shimon, B. Rybtchinski, Selective bromination of perylene diimides under mild conditions, J. Org. Chem 2007; 72, 5973–5979.
The Effect of Imide Substituents on the Excited State Properties of Perylene Diimide Derivatives
Year 2022,
Volume: 17 Issue: 1, 11 - 21, 20.03.2022
Erkan Aksoy
,
Andrew Danos
Chunyong Li
Andrew Monkman
Canan Varlıklı
Abstract
Solid state optical properties of fluorescent materials are important for many optical and electronic photonic devices such as organic light emitting diodes, frequency down-converters or luminescent solar concentrators. Perylene diimides (PDIs) represent one of the most popular organic semiconductors which find application in those phonic device applications. In this study, photophysical properties of two dibrominated PDI (DiBrPDIs), one of which contains a branched alkyl chain (2-ethylhexyl, 2-EH) and the other has an aromatic substituent (diisopropylphenyl, DIA) at the imide positions are comparatively studied. Besides their absorption and photoluminescence, lifetime and photoluminescence quantum yield (PLQY), photoinduced absorption properties (PIA) were also examined by fs-transient absorption spectroscopy. Due to their the same π conjugated system, DiBrPDI-DIA and DiBrPDI-2EH exhibited identical absorption and photoluminescence (PL) spectra in solution phase (λabs:527 nm and λPL:552 nm). However, in their film phases which were prepared at the same conditions, DiBrPDI-DIA (λPL-DIA:596 nm; PLQY:73.4%) presented a shorter PL wavelength with a higher PLQY than that of DiBrPDI-2EH (λPL-2EH:649 nm; PLQY:36.7%). 3-D investigations performed by using Chem3D pro software addressed the higher intermolecular distance between the perylene rings induced by the bulky DIA groups, as the main reason of this difference.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBITAK) ve TUBITAK-Bilim İnsanı Destekleme Daire Başkanlığı (BIDEB) (2214A)
Project Number
BIDEB-2214-A (Appl. # 1059B141800476) ve TUBITAK #119F031
Thanks
EA thanks The Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2214-A (Appl. # 1059B141800476) who supported this research financially – for ultrafast pump probe transient absorption spectroscopy in Durham. EA and CV also thank the project support funds of TUBITAK grant #119F031 for financial support of the synthesis, structural and optical characterizations of DiBrPDIs.
References
- [1] M. Mosca, F. Caruso, L. Zambito, R. Macaluso, C. Cali, E. Feltin, Hybrid LEDs pave way to new lighting applications, Photonics Spectra 2013; 47, 60–64.
- [2] M. Mosca, F. Caruso, L. Zambito, B. Seminara, R. Macaluso, C. Calì, et al., Warm white LED light by frequency down-conversion of mixed yellow and red Lumogen, in: Integr. Photonics Mater. Devices, Appl. II 2013: 87670L.
- [3] F. Caruso, M. Mosca, R. MacAluso, E. Feltin, C. Calì, Generation of white LED light by frequency downconversion using perylene-based dye, Electron. Lett 2012; 48, 1417–1419.
- [4] E. Aksoy, N. Demir, C. Varlikli, White LED light production using dibromoperylene derivatives in down conversion of energy, Can. J. Phys 2018; 96 (7), 734–739.
- [5] F. Galeotti, W. Mróz, M. Catellani, B. Kutrzeba-Kotowska, E. Kozma, Tailorable perylene-loaded fluorescent nanostructures: A multifaceted approach enabling their application in white hybrid LEDs, J. Mater. Chem. C 2016; 4 5407–5415.
- [6] S. a. Ruetten, J.K. Thomas, Fluorescence and triplet quantum yields of arenes on surfaces, J. Phys. Chem. B 1998; 102, 598–606.
- [7] M. Mosca, R. Macaluso, I. Crupi, Hybrid Inorganic‐Organic White Light Emitting Diodes, Polym. Light. Devices Displays., Book Editors; Inamuddin, R. Boddula, M. I. Ahamed, A. M. Asiri, Wiley, 2020; 197–262.
- [8] H. Langhals, Cyclic carboxylic imide structures as structure elements of high stability. Novel developments in perylene dye chemistry, Heterocycles 1995; 40, 477–500.
- [9] L. Chen, C. Li, K. Müllen, Beyond perylene diimides: Synthesis, assembly and function of higher rylene chromophores, J. Mater. Chem. C 2014; 2, 1938–1956.
- [10] T. Guner, E. Aksoy, M.M. Demir, C. Varlikli, Perylene-embedded electrospun PS fibers for white light generation, Dye. Pigment 2019; 160, 501–508.
- [11] C. Li, H. Wonneberger, Perylene imides for organic photovoltaics: Yesterday, today, and tomorrow, Adv. Mater 2012; 24, 613–636.
- [12] F. Würthner, C.R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials, Chem. Rev 2016; 116, 962–1052.
- [13] V. Bozkus, E. Aksoy, C. Varlikli, Perylene based solution processed single layer woled with adjustable CCT and CRI, Electron 2021; 10, 1–12.
- [14] E. Aksoy, A. Danos, C. Li, A.P. Monkman, C. Varlikli, Silylethynyl Substitution for Preventing Aggregate Formation in Perylene Diimides, J. Phys. Chem. C 2021; in press.
- [15] M. Kus, Ö. Hakli, C. Zafer, C. Varlikli, S. Demic, S. Özçelik, et al., Optical and electrochemical properties of polyether derivatives of perylenediimides adsorbed on nanocrystalline metal oxide films, Org. Electron 2008; 9, 757–766.
- [16] C. Karapire, M. Kus, G. Turkmen, C.C. Trevithick-Sutton, C.S. Foote, S. Icli, Photooxidation studies with perylenediimides in solution, PVC and sol-gel thin films under concentrated sun light, Sol. Energy 2005; 78, 5–17.
- [17] C. Karapire, C. Zafer, S. Içli, Studies on photophysical and electrochemical properties of synthesized hydroxy perylenediimides in nanostructured titania thin films, Synth. Met 2004; 145, 51–60.
- [18] J. Li, S. Yuan, J.S. Qin, L. Huang, R. Bose, J. Pang, et al., Fluorescence Enhancement in the Solid State by Isolating Perylene Fluorophores in Metal-Organic Frameworks, ACS Appl. Mater. Interfaces 2020; 12, 26727–26732.
- [19] Y. Zhang, B. He, J. Liu, S. Hu, L. Pan, Z. Zhao, et al., Aggregation-induced emission and the working mechanism of 1-benzoyl and 1-benzyl pyrene derivatives, Phys. Chem. Chem. Phys 2018, 20, 9922–9929.
- [20] M. Stolte, T. Schembri, J. Süß, D. Schmidt, A.M. Krause, M.O. Vysotsky, et al., 1-Mono- And 1,7-Disubstituted Perylene Bisimide Dyes with Voluminous Groups at Bay Positions- And Search for Highly Effective Solid-State Fluorescence Materials, Chem. Mater 2020; 32, 6222–6236.
- [21] S.K. Mohan Nalluri, J. Zhou, T. Cheng, Z. Liu, M.T. Nguyen, T. Chen, et al., Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State, J. Am. Chem. Soc 2019, 141, 1290–1303.
- [22] E. Aksoy, A. Danos, C. Varlikli, A.P. Monkman, Navigating CIE Space for Efficient TADF Downconversion WOLEDs, Dye. Pigment 2020, 183, 108707.
- [23] D. Schmidt, M. Stolte, S. Jasmin, A. Liess, V. Stepanenko, F. Würthner, Protein-like Enwrapped Perylene Bisimide Chromophore as a Bright Microcrystalline Emitter Material, Angew. Chemie - Int. Ed 2019; 58, 13385–13389.
- [24] B. Zhang, H. Soleimaninejad, D.J. Jones, J.M. White, K.P. Ghiggino, T. a. Smith, et al., Highly fluorescent molecularly insulated perylene diimides: Effect of concentration on photophysical properties, Chem. Mater 2017; 29, 8395–8403.
- [25] R. Muñoz-Mármol, P.G. Boj, J.M. Villalvilla, J. a. Quintana, N. Zink-Lorre, Á. Sastre-Santos, et al., Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes, J. Phys. Chem. C 2021; in press.
- [26] F. Kong, M. Lin, T. Qiu, The effect of imide substituents on the optical properties of perylene diimide derivatives, Luminescence 2018; 33, 1209–1216.
- [27] Q.U. Khan, G. Tian, L. Bao, S. Qi, D. Wu, Highly uniform supramolecular nano-films derived from carbazole-containing perylene diimide: Via surface-supported self-assembly and their electrically bistable memory behavior, New J. Chem 2018; 42, 11506–11515.
- [28] S. Chen, Y. Liu, W. Qiu, X. Sun, Y. Ma, D. Zhu, Oligothiophene-functionalized perylene bisimide system: Synthesis, characterization, and electrochemical polymerization properties, Chem. Mater 2005; 17, 2208–2215.
- [29] P. Rajasingh, R. Cohen, E. Shirman, L.J.W. Shimon, B. Rybtchinski, Selective bromination of perylene diimides under mild conditions, J. Org. Chem 2007; 72, 5973–5979.