Research Article
BibTex RIS Cite

The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: uv-vis Absorbance and Fluorescence Spectra

Year 2023, Volume: 18 Issue: 2, 477 - 486, 01.09.2023
https://doi.org/10.55525/tjst.1320988

Abstract

We have been investigated in different solvent medium to interactions between 4-Ethoxybenzoic acid (4EOBA), 4-Pentylbenzoic acid (4PentBA), and 4-Pentylphenyl 4-Methylbenzoate (4PP4MetB) liquid crystals with CdS, CdSe and ZnS nanoparticles. For this, the new materials composed from LC compound including the solvent and nanoparticle were investigated by use absorbance and fluorescence spectra. Electronic transitions and differences in absorbance and fluorescence spectra were interpreted. The fluorescence of liquid crystals has been defined in the shifts between wavelengths of the fluorescence of nanomaterials. It can be said that it has occurred blue shift at the maximum fluorescence wavelengths of the 4EOBA-CdS-DMSO and 4EOBA-CdSe-DMSO compared to 4EOBA-DMSO. On the other hand, we can say that in the 4EOBA-ZnS-DMSO solution occurs red shift in the fluorescence band, while the peaks seen in the fluorescence band occur in result of interaction of liquid crystals and nanoparticles.

Supporting Institution

BİTLİS EREN UNIVERSITY

Project Number

BEBAP-2013.04

Thanks

The author thanks for support given via Bitlis Eren University Research Foundation (BEBAP-2013.04).

References

  • Noël C, Navard P. Liquid crystal polymers. Prog Poly Sci 1991; 16: 55–110.
  • Lagerwall JPF, Scalia G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr App Phy 2012; 12: 1387–1412.
  • Andrienko D. Introduction to liquid crystals. J Mol Liq 2018; 267: 520–541.
  • Bahadur B. Liquid Crystal Displays. Mol Crys Liq Crys 1984; 109: 37–41.
  • Smalyukh II. Liquid Crystal Colloids. Annu Rev Condens Matter Phys 2018; 9: 207–226.
  • Konshina E, Shcherbinin D, Kurochkina M. Comparison of the properrties of nematic liquid crystals doped with TiO2 and CdSe/ZnS nanoparticles. J Mol Liq 2018; 267: 308–314.
  • Ramazanov MA, Imamaliyev AR, Humbatov SA, Agamaliev ZA. Effect of barıum titanate particles on dielectric and electro-optical properties of a smectıc-a liquid crystal. Russ Phy J 2018; 60: 1659–1666.
  • Teplov GV, Vorozhtsov AB, Vasil’ev SV. Micro and Nanoparticles of Metals and Metal Oxides and Physicochemical Properties of Highenergy Materials Based on Cyclic Nitroamines. Russ Phy J 2020; 62: 1813–1821.
  • Pandey KK, Tripathi PK, Misra AK, Manohar R. UV response on dielectric properties of nano nematic liquid crystal. Results Phys. 2008; 1119–1123.
  • Moussaoui M, Saoudi R, Tishchenko AV, Chassagneux, F.: Tunable optical properties of ZnS nanoparticles. Electromagnetic and Light Scattering XII. 2010; 178.
  • Yang X, Masadeh AS, McBride JR, Božin ES, Rosenthal SJ, Billinge SJL. Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. Phy Chem Chem Phy. 2013; 15: 8480–8486.
  • Lakowicz JR, Gryczynski I, Gryczynski Z, Murphy CJ. Luminescence spectral properties of CdS nanoparticles. J Phy Chem B. 1999; 103: 7613–7620.
  • Mirzaei J, Urbanski M, Yu K, Kitzerow HS, Hegmann T. Nanocomposites of a nematic liquid crystal doped with magic-sized CdSe quantum dots. J Math Chem 2011; 21: 12710–12716.
  • Bobrovsky A, Mochalov K, Oleinikov V, Sukhanova A, Prudnikau A, Artemyev M, Shibaev, V, Nabiev I. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots. Adv Mater. 2012; 24: 6216–6222.
  • Tauc JC. Semiconductor Amorphous and Liquid. 1974; 195.
  • Tauc J, Menth A. States in the gap. J Non-Crys Solids. 1972; 8–10: 569–585.
  • Li Y, Ma L, Zhang X, Joly AG, Liu Z, Chen W. Synthesis and optical properties of sulfide nanoparticles prepared in dimethylsulfoxide. J Nanosci Nanotechnol 2008; 8: 5646–5651.
  • Rodríguez‐mas F, Ferrer JC, Alonso JL, de Ávila SF, Valiente D. Reduced Graphene Oxide Inserted into PEDOT:PSS Layer to Enhance the Electrical Behaviour of Light-Emitting Diodes. Nanomaterials 2021; 11: 645.
  • Peng WQ, Qu SC, Cong GW, Wang ZG. Concentration effect of Mn2+ on the photoluminescence of ZnS:Mn nanocrystals. J Cryst Growth 2005; 279: 454–460.
  • Maleki, M., Sasani Ghamsari, M., Mirdamadi, S., Ghasemzadeh, R.: A facile route for preparation of CdS nanoparticles. Semicond Phys Quantum Electron Optoelectron 2007; 10 (1): 030-032.
  • Lihitkar NB, Singh SB, Singh J, Srivastava ON, Naik RH, Kulkarni SK. Optical investigations of interaction between zinc tetra phenyl porphyrin and CdSe nanoparticles. Chem Phys Let 2009; 483: 227–232.
  • Ashtaputre SS, Deshpande A, Marathe S, Wankhede ME, Chimanpure J, Pasricha R, Urban J, Haram SK, Gosavi SW, Kulkarni SK. Synthesis and analysis of ZnO and CdSe nanoparticles. Pramana - J Phy.2005; 65,:615–620.
  • Norris D, Bawendi M. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B 1996; 53: 16338.
  • Biswas S, Kar S, Chaudhuri S. Synthesis and characterization of zinc sulfide nanostructures. Synth. React. Inorg. Met.-Org. Chem Nano-Metal Chemistry. 2006; 36: 33–36.
  • Tamrakar R, Ramrakhiani M, Chandra BP. Effect of Capping Agent Concentration on Photophysical Properties of Zinc Sulfide Nanocrystals. The Open Nano J. 2008; 2: 12–16.
  • Chen L, Zhang J, Luo Y, Lu S, Wang X. Effect of Zn2+ and Mn2+ introduction on the luminescent properties of colloidal ZnS:Mn2+ nanoparticles. App Phy Let 2004; 84: 112–114.
  • Reichardt C. Solvents and Solvent Effects in Organic Chemistry. New York: VCH, 2008.

Sıvı Kristaller ve Nanoyapılardan Oluşan Nanomalzemeler Üzerine Çözücü Etkisi: uv-vis Absorbans ve Floresans Spektrumları

Year 2023, Volume: 18 Issue: 2, 477 - 486, 01.09.2023
https://doi.org/10.55525/tjst.1320988

Abstract

4-Etoksibenzoik asit (4EOBA), 4-Pentilbenzoik asit (4PentBA) ve 4-Pentilfenil 4-Metilbenzoat (4PP4MetB) sıvı kristaller ve CdS, CdSe ile ZnS nanopartikülleri arasındaki etkileşimleri farklı çözücüler içerisinde incelenmiştir. Bunun için çözücü ve nanopartikül içeren LC bileşiklerden oluşan yeni malzemelerin absorbans ve floresans spektrumları kullanılarak incelenmiştir. Absorbans ve floresans elektronik geçişleri yorumlanır. Sıvı kristallerin floresansı, nanomalzemelerin floresansının dalga boyları arasındaki kaymalarda incelenmiştir. 4EOBA-CdS-DMSO ve 4EOBA-CdSe-DMSO'nun maksimum floresans dalga boylarında 4EOBA-DMSO'ya göre maviye kayma meydana geldiği söylenebilir. Öte yandan, 4EOBA-ZnS-DMSO çözeltisinde, floresan bandında kırmızıya kayma meydana gelirken, floresan bandında görülen tepe noktaları, sıvı kristaller ve nanopartiküllerin etkileşim meydana geldiğini söyleyebiliriz.

Project Number

BEBAP-2013.04

References

  • Noël C, Navard P. Liquid crystal polymers. Prog Poly Sci 1991; 16: 55–110.
  • Lagerwall JPF, Scalia G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr App Phy 2012; 12: 1387–1412.
  • Andrienko D. Introduction to liquid crystals. J Mol Liq 2018; 267: 520–541.
  • Bahadur B. Liquid Crystal Displays. Mol Crys Liq Crys 1984; 109: 37–41.
  • Smalyukh II. Liquid Crystal Colloids. Annu Rev Condens Matter Phys 2018; 9: 207–226.
  • Konshina E, Shcherbinin D, Kurochkina M. Comparison of the properrties of nematic liquid crystals doped with TiO2 and CdSe/ZnS nanoparticles. J Mol Liq 2018; 267: 308–314.
  • Ramazanov MA, Imamaliyev AR, Humbatov SA, Agamaliev ZA. Effect of barıum titanate particles on dielectric and electro-optical properties of a smectıc-a liquid crystal. Russ Phy J 2018; 60: 1659–1666.
  • Teplov GV, Vorozhtsov AB, Vasil’ev SV. Micro and Nanoparticles of Metals and Metal Oxides and Physicochemical Properties of Highenergy Materials Based on Cyclic Nitroamines. Russ Phy J 2020; 62: 1813–1821.
  • Pandey KK, Tripathi PK, Misra AK, Manohar R. UV response on dielectric properties of nano nematic liquid crystal. Results Phys. 2008; 1119–1123.
  • Moussaoui M, Saoudi R, Tishchenko AV, Chassagneux, F.: Tunable optical properties of ZnS nanoparticles. Electromagnetic and Light Scattering XII. 2010; 178.
  • Yang X, Masadeh AS, McBride JR, Božin ES, Rosenthal SJ, Billinge SJL. Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. Phy Chem Chem Phy. 2013; 15: 8480–8486.
  • Lakowicz JR, Gryczynski I, Gryczynski Z, Murphy CJ. Luminescence spectral properties of CdS nanoparticles. J Phy Chem B. 1999; 103: 7613–7620.
  • Mirzaei J, Urbanski M, Yu K, Kitzerow HS, Hegmann T. Nanocomposites of a nematic liquid crystal doped with magic-sized CdSe quantum dots. J Math Chem 2011; 21: 12710–12716.
  • Bobrovsky A, Mochalov K, Oleinikov V, Sukhanova A, Prudnikau A, Artemyev M, Shibaev, V, Nabiev I. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots. Adv Mater. 2012; 24: 6216–6222.
  • Tauc JC. Semiconductor Amorphous and Liquid. 1974; 195.
  • Tauc J, Menth A. States in the gap. J Non-Crys Solids. 1972; 8–10: 569–585.
  • Li Y, Ma L, Zhang X, Joly AG, Liu Z, Chen W. Synthesis and optical properties of sulfide nanoparticles prepared in dimethylsulfoxide. J Nanosci Nanotechnol 2008; 8: 5646–5651.
  • Rodríguez‐mas F, Ferrer JC, Alonso JL, de Ávila SF, Valiente D. Reduced Graphene Oxide Inserted into PEDOT:PSS Layer to Enhance the Electrical Behaviour of Light-Emitting Diodes. Nanomaterials 2021; 11: 645.
  • Peng WQ, Qu SC, Cong GW, Wang ZG. Concentration effect of Mn2+ on the photoluminescence of ZnS:Mn nanocrystals. J Cryst Growth 2005; 279: 454–460.
  • Maleki, M., Sasani Ghamsari, M., Mirdamadi, S., Ghasemzadeh, R.: A facile route for preparation of CdS nanoparticles. Semicond Phys Quantum Electron Optoelectron 2007; 10 (1): 030-032.
  • Lihitkar NB, Singh SB, Singh J, Srivastava ON, Naik RH, Kulkarni SK. Optical investigations of interaction between zinc tetra phenyl porphyrin and CdSe nanoparticles. Chem Phys Let 2009; 483: 227–232.
  • Ashtaputre SS, Deshpande A, Marathe S, Wankhede ME, Chimanpure J, Pasricha R, Urban J, Haram SK, Gosavi SW, Kulkarni SK. Synthesis and analysis of ZnO and CdSe nanoparticles. Pramana - J Phy.2005; 65,:615–620.
  • Norris D, Bawendi M. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B 1996; 53: 16338.
  • Biswas S, Kar S, Chaudhuri S. Synthesis and characterization of zinc sulfide nanostructures. Synth. React. Inorg. Met.-Org. Chem Nano-Metal Chemistry. 2006; 36: 33–36.
  • Tamrakar R, Ramrakhiani M, Chandra BP. Effect of Capping Agent Concentration on Photophysical Properties of Zinc Sulfide Nanocrystals. The Open Nano J. 2008; 2: 12–16.
  • Chen L, Zhang J, Luo Y, Lu S, Wang X. Effect of Zn2+ and Mn2+ introduction on the luminescent properties of colloidal ZnS:Mn2+ nanoparticles. App Phy Let 2004; 84: 112–114.
  • Reichardt C. Solvents and Solvent Effects in Organic Chemistry. New York: VCH, 2008.
There are 27 citations in total.

Details

Primary Language English
Subjects Optical Properties of Materials
Journal Section TJST
Authors

Yunus Emre Kara 0000-0002-8412-6633

Yadigar Gülseven Sıdır 0000-0002-5329-2815

Sabit Horoz 0000-0003-4078-8616

Project Number BEBAP-2013.04
Publication Date September 1, 2023
Submission Date June 29, 2023
Published in Issue Year 2023 Volume: 18 Issue: 2

Cite

APA Kara, Y. E., Gülseven Sıdır, Y., & Horoz, S. (2023). The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: uv-vis Absorbance and Fluorescence Spectra. Turkish Journal of Science and Technology, 18(2), 477-486. https://doi.org/10.55525/tjst.1320988
AMA Kara YE, Gülseven Sıdır Y, Horoz S. The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: uv-vis Absorbance and Fluorescence Spectra. TJST. September 2023;18(2):477-486. doi:10.55525/tjst.1320988
Chicago Kara, Yunus Emre, Yadigar Gülseven Sıdır, and Sabit Horoz. “The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: Uv-Vis Absorbance and Fluorescence Spectra”. Turkish Journal of Science and Technology 18, no. 2 (September 2023): 477-86. https://doi.org/10.55525/tjst.1320988.
EndNote Kara YE, Gülseven Sıdır Y, Horoz S (September 1, 2023) The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: uv-vis Absorbance and Fluorescence Spectra. Turkish Journal of Science and Technology 18 2 477–486.
IEEE Y. E. Kara, Y. Gülseven Sıdır, and S. Horoz, “The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: uv-vis Absorbance and Fluorescence Spectra”, TJST, vol. 18, no. 2, pp. 477–486, 2023, doi: 10.55525/tjst.1320988.
ISNAD Kara, Yunus Emre et al. “The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: Uv-Vis Absorbance and Fluorescence Spectra”. Turkish Journal of Science and Technology 18/2 (September 2023), 477-486. https://doi.org/10.55525/tjst.1320988.
JAMA Kara YE, Gülseven Sıdır Y, Horoz S. The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: uv-vis Absorbance and Fluorescence Spectra. TJST. 2023;18:477–486.
MLA Kara, Yunus Emre et al. “The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: Uv-Vis Absorbance and Fluorescence Spectra”. Turkish Journal of Science and Technology, vol. 18, no. 2, 2023, pp. 477-86, doi:10.55525/tjst.1320988.
Vancouver Kara YE, Gülseven Sıdır Y, Horoz S. The Solvent Effect on Nanomaterials Composed of Liquid Crystals and Nanoparticles: uv-vis Absorbance and Fluorescence Spectra. TJST. 2023;18(2):477-86.