Research Article
BibTex RIS Cite

Bernstein Operatörlerinin Yakınsama Analizi Üzerine

Year 2025, Volume: 20 Issue: 1, 1 - 6
https://doi.org/10.55525/tjst.1441856

Abstract

Son yıllarda, q-Bernstein polinomları yaklaşım teorisinde önemli bir konu olarak ortaya çıkmıştır. Çok sayıda çalışma bu polinomun yakınsama kriterlerini incelemiş, bunların önemini ve kullanışlılığını vurgulamıştır. Literatürde sıklıkla göz ardı edilen bir nokta, bu polinomların çekirdeklerinin değişken parametreli binom dağılımının olasılıklarına bağlı olmasıdır. Bu özellikten yararlanarak, binom bağımlılığına ilişkin bu polinomun basitleştirilmiş bir formunu geliştirdik; bu, değişken parametreli bir binom değişkeni için momentlerinin hesaplanmasını kolaylaştırmıştır. Bu yaklaşım yalnızca hesaplama süreçlerini basitleştirmekle kalmaz, aynı zamanda bu polinomun yakınsama özelliklerine de ışık tutar. Bu indirgenmiş formu inceleyerek yakınsama için bir üst sınır belirlenir. Bulgular, q-Bernstein polinomunun yaklaşım teorisindeki çok yönlülüğünü ve gücünü vurgular ve polinomun matematiksel temelleri ve potansiyel uygulamaları hakkında daha derin bir anlayış sağlar.

References

  • Kingora K, Sadat-Hosseini H. A novel interpolation-free sharp-interface immersed boundary method. J Comput Phys 2022; 453, 110933.
  • Tu S, Yang H, Dong L, Huang Y. A stabilized moving Kriging interpolation method and its application in boundary node method. Eng Anal Boundary Elem 2019; 100: 14-23.
  • Kochurin E. A Simulation of the Wave Turbulence of a Liquid Surface Using the Dynamic Conformal Transformation Method. JETP Letters 2023; 118(12): 893-898.
  • Christodoulou KN, Scriven LE. Discretization of free surface flows and other moving boundary problems. J Comput Phys 1992; 99(1): 39-55.
  • Yang X, Zhang X, Li Z, He GW. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 2009; 228(20): 7821-7836.
  • Cetin E, Applications of Bernstein polynomials. Master Thesis, Uludağ Uni., Graduate School of Natural and Applied Sciences, Bursa, 2011.
  • Kılın BK, Bernstein-Chlodowsky Type Polynomials and Some Applications. Master Thesis, Gaziantep Uni., Graduate School of Natural and Applied Sciences, Gaziantep, 2019.
  • Liu YJ, Cheng WT, Zhang WH, Ye PX. Approximation Properties of the Blending-Type Bernstein–Durrmeyer Operators. Axioms 2022; 12(1): 5.
  • Ayman-Mursaleen M, Nasiruzzaman M, Rao N, Dilshad M, Nisar KS. Approximation by the modified λ-Bernstein-polynomial in terms of basis function. AIMS Math 2024; 9(2): 4409-4426.
  • Yadav R, Mauroy A. Approximation of the Koopman operator via Bernstein polynomials. 2024, arXiv preprint arXiv:2403.02438.
  • Aslan R, Mursaleen M. Some approximation results on a class of new type λ-Bernstein polynomials. J Math Inequal 2022; 16(2): 445-462.
  • Aslan R. Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators. Kuwait J Sci 2024; 51(1): 100168.
  • Su LT, Aslan R, Zheng FS, Mursaleen M. On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ. J Inequal Appl 2023; 2023(1): 56.
  • Feller W. An Introduction to Probability Theory and Its Applications. New York, Wiley, 1968.
  • Charalambides CA. The q-Bernstein basis as a q-binomial distribution. J Stat Plann Inference 2010; 140(8): 2184-2190.
  • II’inskii A, Ostrovska S. Convergence of generalized Bernstein polynomials based on the q-integers. Constructive theory of functions 2003; 309-313.
  • Bernstein S. Demonstration du theoreme de Weierstrass Fondee Sur le Calcul des Probabilities. Communications of the Kharkov Mathematical Society 1912; 13: 1-2. IP: 88.236.115.136.
  • Lupaş A. A q-analogue of the Bernstein Operator. Seminar on Numerical and Statistical Calculus 1987; 9: 85-92.
  • Acu MA. Stancu–Schurer–Kantorovich Operators Based on q-integers. Appl Math Comput 2015; 259: 896–907.
  • Cárdenas-Morales D, Garrancho P, Rasa I. Bernstein-type Operators which Preserve Polynomials. Comput Math Appl 2011; 62(1): 158–163.
  • Ostrovska S. On the Lupaş q-analogue of the Bernstein operator. The Rocky Mountain J Math 2006;1615-1629.
  • Patterson RF, Savas E. Korovkin and Weierstrass approximation via lacunary statistical sequences. J Math Stat 2005; 1(2): 165-167.
  • Korovkin PP. Linear Operators and Approximation Theory. Delhi, Hindustan Publ. Co., 1960.
  • Kim T. A note on q-Bernstein polynomials, Russ J Math Phys 2011; 18(1): 73-82.
  • Rıvlin JP. An Introduction to the Approximation of Functions, New York, Bronx, 1978.
  • Gurcan M, Colak C. Generalization of Korovkin Type Approximation by Appropriate Random Variables and Moments and an Application in Medicine. Pak J Statist 2011; 27(3): 283-297.
  • Phillips GM. On generalized Bernstein polynomials. In Numerical Analysis 1996; 263-269.
  • Dalmanoglu O. Approximation by Kantorovich type q-Bernstein operators, In Proceedings of the 12th WSEAS International Conference on Applied Mathematics 2007; 113-117.
  • Gupta V, Heping W. The rate of convergence of q‐Durrmeyer operators for 0<q< 1. Math Methods Appl Sci 2008; 31(16): 1946-1955.

On the Convergence Analysis of Bernstein Operators

Year 2025, Volume: 20 Issue: 1, 1 - 6
https://doi.org/10.55525/tjst.1441856

Abstract

In recent years, many studies have been conducted to emphasize the convergence criteria of the q-Bernstein polynomial and their importance. A point often overlooked in the literature is that the kernels of these polynomials depend on the probabilities of the variable parameter binomial distribution. Taking advantage of this property, we develop a simplified form of this polynomial for the binomial variable with variable parameters. This approach not only simplifies the computational processes but also sheds light on the convergence properties of this polynomial. By examining this reduced form, an upper bound for convergence is determined. The findings highlight the versatility and power of the q-Bernstein polynomial in approximation theory and provide a deeper understanding of the mathematical foundations and potential applications of the polynomial.

References

  • Kingora K, Sadat-Hosseini H. A novel interpolation-free sharp-interface immersed boundary method. J Comput Phys 2022; 453, 110933.
  • Tu S, Yang H, Dong L, Huang Y. A stabilized moving Kriging interpolation method and its application in boundary node method. Eng Anal Boundary Elem 2019; 100: 14-23.
  • Kochurin E. A Simulation of the Wave Turbulence of a Liquid Surface Using the Dynamic Conformal Transformation Method. JETP Letters 2023; 118(12): 893-898.
  • Christodoulou KN, Scriven LE. Discretization of free surface flows and other moving boundary problems. J Comput Phys 1992; 99(1): 39-55.
  • Yang X, Zhang X, Li Z, He GW. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 2009; 228(20): 7821-7836.
  • Cetin E, Applications of Bernstein polynomials. Master Thesis, Uludağ Uni., Graduate School of Natural and Applied Sciences, Bursa, 2011.
  • Kılın BK, Bernstein-Chlodowsky Type Polynomials and Some Applications. Master Thesis, Gaziantep Uni., Graduate School of Natural and Applied Sciences, Gaziantep, 2019.
  • Liu YJ, Cheng WT, Zhang WH, Ye PX. Approximation Properties of the Blending-Type Bernstein–Durrmeyer Operators. Axioms 2022; 12(1): 5.
  • Ayman-Mursaleen M, Nasiruzzaman M, Rao N, Dilshad M, Nisar KS. Approximation by the modified λ-Bernstein-polynomial in terms of basis function. AIMS Math 2024; 9(2): 4409-4426.
  • Yadav R, Mauroy A. Approximation of the Koopman operator via Bernstein polynomials. 2024, arXiv preprint arXiv:2403.02438.
  • Aslan R, Mursaleen M. Some approximation results on a class of new type λ-Bernstein polynomials. J Math Inequal 2022; 16(2): 445-462.
  • Aslan R. Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators. Kuwait J Sci 2024; 51(1): 100168.
  • Su LT, Aslan R, Zheng FS, Mursaleen M. On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ. J Inequal Appl 2023; 2023(1): 56.
  • Feller W. An Introduction to Probability Theory and Its Applications. New York, Wiley, 1968.
  • Charalambides CA. The q-Bernstein basis as a q-binomial distribution. J Stat Plann Inference 2010; 140(8): 2184-2190.
  • II’inskii A, Ostrovska S. Convergence of generalized Bernstein polynomials based on the q-integers. Constructive theory of functions 2003; 309-313.
  • Bernstein S. Demonstration du theoreme de Weierstrass Fondee Sur le Calcul des Probabilities. Communications of the Kharkov Mathematical Society 1912; 13: 1-2. IP: 88.236.115.136.
  • Lupaş A. A q-analogue of the Bernstein Operator. Seminar on Numerical and Statistical Calculus 1987; 9: 85-92.
  • Acu MA. Stancu–Schurer–Kantorovich Operators Based on q-integers. Appl Math Comput 2015; 259: 896–907.
  • Cárdenas-Morales D, Garrancho P, Rasa I. Bernstein-type Operators which Preserve Polynomials. Comput Math Appl 2011; 62(1): 158–163.
  • Ostrovska S. On the Lupaş q-analogue of the Bernstein operator. The Rocky Mountain J Math 2006;1615-1629.
  • Patterson RF, Savas E. Korovkin and Weierstrass approximation via lacunary statistical sequences. J Math Stat 2005; 1(2): 165-167.
  • Korovkin PP. Linear Operators and Approximation Theory. Delhi, Hindustan Publ. Co., 1960.
  • Kim T. A note on q-Bernstein polynomials, Russ J Math Phys 2011; 18(1): 73-82.
  • Rıvlin JP. An Introduction to the Approximation of Functions, New York, Bronx, 1978.
  • Gurcan M, Colak C. Generalization of Korovkin Type Approximation by Appropriate Random Variables and Moments and an Application in Medicine. Pak J Statist 2011; 27(3): 283-297.
  • Phillips GM. On generalized Bernstein polynomials. In Numerical Analysis 1996; 263-269.
  • Dalmanoglu O. Approximation by Kantorovich type q-Bernstein operators, In Proceedings of the 12th WSEAS International Conference on Applied Mathematics 2007; 113-117.
  • Gupta V, Heping W. The rate of convergence of q‐Durrmeyer operators for 0<q< 1. Math Methods Appl Sci 2008; 31(16): 1946-1955.
There are 29 citations in total.

Details

Primary Language English
Subjects Probability Theory, Stochastic Analysis and Modelling
Journal Section TJST
Authors

Ayşe Turan Buğatekin 0000-0001-8949-8367

Publication Date
Submission Date February 23, 2024
Acceptance Date October 4, 2024
Published in Issue Year 2025 Volume: 20 Issue: 1

Cite

APA Turan Buğatekin, A. (n.d.). On the Convergence Analysis of Bernstein Operators. Turkish Journal of Science and Technology, 20(1), 1-6. https://doi.org/10.55525/tjst.1441856
AMA Turan Buğatekin A. On the Convergence Analysis of Bernstein Operators. TJST. 20(1):1-6. doi:10.55525/tjst.1441856
Chicago Turan Buğatekin, Ayşe. “On the Convergence Analysis of Bernstein Operators”. Turkish Journal of Science and Technology 20, no. 1 n.d.: 1-6. https://doi.org/10.55525/tjst.1441856.
EndNote Turan Buğatekin A On the Convergence Analysis of Bernstein Operators. Turkish Journal of Science and Technology 20 1 1–6.
IEEE A. Turan Buğatekin, “On the Convergence Analysis of Bernstein Operators”, TJST, vol. 20, no. 1, pp. 1–6, doi: 10.55525/tjst.1441856.
ISNAD Turan Buğatekin, Ayşe. “On the Convergence Analysis of Bernstein Operators”. Turkish Journal of Science and Technology 20/1 (n.d.), 1-6. https://doi.org/10.55525/tjst.1441856.
JAMA Turan Buğatekin A. On the Convergence Analysis of Bernstein Operators. TJST.;20:1–6.
MLA Turan Buğatekin, Ayşe. “On the Convergence Analysis of Bernstein Operators”. Turkish Journal of Science and Technology, vol. 20, no. 1, pp. 1-6, doi:10.55525/tjst.1441856.
Vancouver Turan Buğatekin A. On the Convergence Analysis of Bernstein Operators. TJST. 20(1):1-6.