Research Article
BibTex RIS Cite

A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode

Year 2025, Volume: 20 Issue: 2, 355 - 369, 30.09.2025
https://doi.org/10.55525/tjst.1610926

Abstract

Air conditioners are among the most commonly used systems for fulfilling climate control requirements due to their dual capability to operate in both heating and cooling modes. When functioning in heating mode, these systems follow a cycle similar to that of a heat pump. However, failure to adhere to the installation guidelines provided by manufacturers, inadequate training of installation personnel, or user-driven installation modifications can result in increased energy consumption and suboptimal system performance. This study models improper installation practices of air conditioning systems and investigates their impacts on Life Cycle Climate Performance (LCCP) and annual energy consumption (AEC) during heating mode operation. In the experimental setup, airflow to the outdoor unit was progressively obstructed, and performance data were collected at various fan speed levels. Based on this data, LCCP and AEC analyses were conducted. Measurements were taken at multiple fan speeds corresponding to different degrees of airflow blockage. The scenario with unobstructed airflow was used as a reference point for comparison. When comparing the reference condition at 100 percent fan speed to the scenario with 93 percent airflow obstruction at the same fan speed, the LCCP value increased by 991.03 kilograms of CO2. In this obstructed condition, the AEC was found to be 26.89 percent higher than the reference case.

Ethical Statement

We undertake that in the article we submitted for publication, no study requiring ethics committee approval, was conducted.

Thanks

The historical temperature data used in this study were obtained from the NASA Langley Research Center (LaRC) POWER Project funded through the NASA Earth Science/Applied Science Program.

References

  • Başkanlığı İD. Montreal Protokolü-Kigali Değişikliği n.d.
  • Özdemİr M, Onat A. Isi pompasi si̇stemleri̇ ve örnek bi̇r uygulama n.d.:0–2.
  • Duan J, Li N, Peng J, Wang C, Liu Q, Zhou X. Study on occupant behaviour using air conditioning of high-rise residential buildings in hot summer and cold winter zone in China. Energy Build 2022;276:112498.
  • Han B, Yan G, Yu J. Refrigerant migration during startup of a split air conditioner in heating mode. Appl Therm Eng 2019;148:1068–73.
  • Zavala C, Babonneau F, Homem-de-Mello T. Measuring the impact of regional climate change on heating and cooling demand for the Chilean energy transition. J Clean Prod 2023;428:139390.
  • Jin W, He J, Li L. The Impact of Split Air Condition Supply Temperature to Indoor Temperature Field in Winter. Procedia Eng 2015;121:1689–96.
  • Andrade A, Zapata-Mina J, Restrepo A. Exergy and environmental assessment of R-290 as a substitute of R-410A of room air conditioner variable type based on LCCP and TEWI approaches. Results Eng 2024;21:101806.
  • Choi S, Oh J, Hwang Y, Lee H. Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea. Appl Therm Eng 2017;120:88–98.
  • Olympios A V., Hoseinpoori P, Markides CN. Toward optimal designs of domestic air-to-water heat pumps for a net-zero carbon energy system in the UK. Cell Reports Sustain 2024;1:100021.
  • Karali N, Shah N, Park WY, Khanna N, Ding C, Lin J, et al. Improving the energy efficiency of room air conditioners in China: Costs and benefits. Appl Energy 2020;258:114023.
  • Milev G, Al-Habaibeh A, Fanshawe S, Siena FL. Investigating the effect of the defrost cycles of air-source heat pumps on their electricity demand in residential buildings. Energy Build 2023;300:113656.
  • Wang F, You T. Comparative analysis on the life cycle climate performance of ground source heat pump using alternative refrigerants. Case Stud Therm Eng 2023;42:102761.
  • Chae S, Bae S, Nam Y. Economic and environmental analysis of the optimum design for the integrated system with air source heat pump and PVT. Case Stud Therm Eng 2023;48:103142.
  • Li G. Comprehensive investigations of life cycle climate performance of packaged air source heat pumps for residential application. Renew Sustain Energy Rev 2015;43:702–10.
  • Lee H, Troch S, Hwang Y, Radermacher R. Évaluation du LCCP de diverses options de cycle à compression de vapeur et de frigorigènes à faible GWP. Int J Refrig 2016;70:128–37.
  • Yang C, Seo S, Takata N, Thu K, Miyazaki T. The life cycle climate performance evaluation of low-GWP refrigerants for domestic heat pumps. Int J Refrig 2021;121:33–42.
  • Dai B, Qi H, Dou W, Liu S, Zhong D, Yang H, et al. Life cycle energy, emissions and cost evaluation of CO2 air source heat pump system to replace traditional heating methods for residential heating in China: System configurations. Energy Convers Manag 2020;218:112954.
  • Kim D, Song KS, Lim J, Kim Y. Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions. Energy 2018;155:117–27.
  • Dai B, Wang Q, Liu S, Wang D, Yu L, Li X, et al. Novel configuration of dual-temperature condensation and dual-temperature evaporation high-temperature heat pump system: Carbon footprint, energy consumption, and financial assessment. Energy Convers Manag 2023;292:117360.
  • Yu B, Long J, Zhang Y, Ouyang H, Wang D, Shi J, et al. Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China’s carbon neutrality. Appl Energy 2024;353:122061.
  • Maeng H, Kim J, Kwon S, Kim Y. Energy and environmental performance of vapor injection heat pumps using R134a, R152a, and R1234yf under various injection conditions. Energy 2023;280:128265.
  • Shin HH, Kim K, Lee M, Han C, Kim Y. Maximized thermal energy utilization of surface water-source heat pumps using heat source compensation strategies under low water temperature conditions. Energy 2024;288:129700.
  • Yulianto M, Suzuki T, Ge Z, Tsuchino T, Urakawa M, Taira S, et al. Performance assessment of an R32 commercial heat pump water heater in different climates. Sustain Energy Technol Assessments 2022;49:101679.
  • Lee M, Ham SH, Lee S, Kim J, Kim Y. Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions. Energy 2023;270:126868.
  • Mota-Babiloni A, Barbosa JR, Makhnatch P, Lozano JA. Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems. Renew Sustain Energy Rev 2020;129.
  • Ergen R, Gürtürk M. The Effects of Installation Faults of Air Conditioning Systems on Carbon Emissions. Turkish J Sci Technol 2025;20:209–24.
  • Bakanlığı D. Viyana Sözleşmesi ve Montreal Protokolü n.d.
  • Müdürlüğü ÇY genel. Türkiye, İklim Değişikliğini olumsuz etkileyen Florlu Sera Gazlarının azaltımını hedefleyen Kigali Değişikliğini onayladı n.d.
  • Troch SV. Harmonızatıon of lıfe cycle clımate performance and ıts ımprovement for heat pump applıcatıons. MSc, University of Maryland, Washington DC, United States, 2016.
  • Troch S, Lee H, Hwang Y, Radermacher R. Methodology Harmonization of the Life Cycle Climate Performance Methodology. Int Refrig Air Cond Conf 2016.
  • Life Cycle Climate Performance Working Group. Guideline for Life Cycle Climate Performance January 2016. Int Inst Refrig 2016:1–26.
  • Wan H, Cao T, Hwang Y, Radermacher R, Andersen SO, Chin S. A comprehensive review of life cycle climate performance (LCCP) for air conditioning systems. Int J Refrig 2021;130:187–98.
  • Winkler J, Das S, Earle L, Burkett L, Robertson J, Roberts D, et al. Impact of installation faults in air conditioners and heat pumps in single-family homes on U.S. energy usage. Appl Energy 2020;278:115533.

Isıtma Modunda Kullanılan Klimalarda Montaj Hatalarından Kaynaklanan Karbon Emisyonlarının Araştırılması

Year 2025, Volume: 20 Issue: 2, 355 - 369, 30.09.2025
https://doi.org/10.55525/tjst.1610926

Abstract

İklimlendirme gereksinimlerini karşılamak amacıyla en yaygın kullanılan sistemlerden biri olan klimalar, hem ısıtma hem de soğutma modlarında çalışabilme özellikleri sayesinde tercih edilmektedir. Isıtma modunda çalıştıklarında, bu sistemler ısı pompasına benzer bir çevrim izlemektedir. Ancak, üretici firmalar tarafından belirtilen kurulum talimatlarına uyulmaması, montaj personelinin yetersiz eğitimi veya kullanıcı kaynaklı kurulum değişiklikleri, enerji tüketiminin artmasına ve sistemin istenilen performansta çalışmamasına neden olabilmektedir. Bu çalışmada, klima sistemlerinde yapılan hatalı kurulum uygulamaları modellenmiş ve bu uygulamaların sistemin Yaşam Döngüsü İklim Performansı (LCCP) ile Yıllık Enerji Tüketimi (AEC) üzerindeki etkileri, sistemin ısıtma modunda çalışması sırasında incelenmiştir. Deneysel düzende, dış üniteye olan hava akışı kademeli olarak engellenmiş ve farklı fan hızlarında performans verileri toplanmıştır. Elde edilen verilere dayanarak LCCP ve AEC analizleri gerçekleştirilmiştir. Hava akışının farklı oranlarda engellendiği koşullarda, çeşitli fan hızlarında ölçümler yapılmıştır. Hava akışının tamamen açık olduğu durum referans senaryo olarak kullanılmıştır. Referans koşulda (hava akışı engellenmemiş ve fan hızı %100) elde edilen değer ile %93 oranında hava akışı engellenmiş ve fan hızı yine %100 olan durum karşılaştırıldığında, LCCP değerinde 991,03 kg CO₂ artış gözlemlenmiştir. Aynı koşullarda, AEC değeri referans duruma kıyasla %26,89 oranında daha yüksek bulunmuştur.

References

  • Başkanlığı İD. Montreal Protokolü-Kigali Değişikliği n.d.
  • Özdemİr M, Onat A. Isi pompasi si̇stemleri̇ ve örnek bi̇r uygulama n.d.:0–2.
  • Duan J, Li N, Peng J, Wang C, Liu Q, Zhou X. Study on occupant behaviour using air conditioning of high-rise residential buildings in hot summer and cold winter zone in China. Energy Build 2022;276:112498.
  • Han B, Yan G, Yu J. Refrigerant migration during startup of a split air conditioner in heating mode. Appl Therm Eng 2019;148:1068–73.
  • Zavala C, Babonneau F, Homem-de-Mello T. Measuring the impact of regional climate change on heating and cooling demand for the Chilean energy transition. J Clean Prod 2023;428:139390.
  • Jin W, He J, Li L. The Impact of Split Air Condition Supply Temperature to Indoor Temperature Field in Winter. Procedia Eng 2015;121:1689–96.
  • Andrade A, Zapata-Mina J, Restrepo A. Exergy and environmental assessment of R-290 as a substitute of R-410A of room air conditioner variable type based on LCCP and TEWI approaches. Results Eng 2024;21:101806.
  • Choi S, Oh J, Hwang Y, Lee H. Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea. Appl Therm Eng 2017;120:88–98.
  • Olympios A V., Hoseinpoori P, Markides CN. Toward optimal designs of domestic air-to-water heat pumps for a net-zero carbon energy system in the UK. Cell Reports Sustain 2024;1:100021.
  • Karali N, Shah N, Park WY, Khanna N, Ding C, Lin J, et al. Improving the energy efficiency of room air conditioners in China: Costs and benefits. Appl Energy 2020;258:114023.
  • Milev G, Al-Habaibeh A, Fanshawe S, Siena FL. Investigating the effect of the defrost cycles of air-source heat pumps on their electricity demand in residential buildings. Energy Build 2023;300:113656.
  • Wang F, You T. Comparative analysis on the life cycle climate performance of ground source heat pump using alternative refrigerants. Case Stud Therm Eng 2023;42:102761.
  • Chae S, Bae S, Nam Y. Economic and environmental analysis of the optimum design for the integrated system with air source heat pump and PVT. Case Stud Therm Eng 2023;48:103142.
  • Li G. Comprehensive investigations of life cycle climate performance of packaged air source heat pumps for residential application. Renew Sustain Energy Rev 2015;43:702–10.
  • Lee H, Troch S, Hwang Y, Radermacher R. Évaluation du LCCP de diverses options de cycle à compression de vapeur et de frigorigènes à faible GWP. Int J Refrig 2016;70:128–37.
  • Yang C, Seo S, Takata N, Thu K, Miyazaki T. The life cycle climate performance evaluation of low-GWP refrigerants for domestic heat pumps. Int J Refrig 2021;121:33–42.
  • Dai B, Qi H, Dou W, Liu S, Zhong D, Yang H, et al. Life cycle energy, emissions and cost evaluation of CO2 air source heat pump system to replace traditional heating methods for residential heating in China: System configurations. Energy Convers Manag 2020;218:112954.
  • Kim D, Song KS, Lim J, Kim Y. Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions. Energy 2018;155:117–27.
  • Dai B, Wang Q, Liu S, Wang D, Yu L, Li X, et al. Novel configuration of dual-temperature condensation and dual-temperature evaporation high-temperature heat pump system: Carbon footprint, energy consumption, and financial assessment. Energy Convers Manag 2023;292:117360.
  • Yu B, Long J, Zhang Y, Ouyang H, Wang D, Shi J, et al. Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China’s carbon neutrality. Appl Energy 2024;353:122061.
  • Maeng H, Kim J, Kwon S, Kim Y. Energy and environmental performance of vapor injection heat pumps using R134a, R152a, and R1234yf under various injection conditions. Energy 2023;280:128265.
  • Shin HH, Kim K, Lee M, Han C, Kim Y. Maximized thermal energy utilization of surface water-source heat pumps using heat source compensation strategies under low water temperature conditions. Energy 2024;288:129700.
  • Yulianto M, Suzuki T, Ge Z, Tsuchino T, Urakawa M, Taira S, et al. Performance assessment of an R32 commercial heat pump water heater in different climates. Sustain Energy Technol Assessments 2022;49:101679.
  • Lee M, Ham SH, Lee S, Kim J, Kim Y. Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions. Energy 2023;270:126868.
  • Mota-Babiloni A, Barbosa JR, Makhnatch P, Lozano JA. Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems. Renew Sustain Energy Rev 2020;129.
  • Ergen R, Gürtürk M. The Effects of Installation Faults of Air Conditioning Systems on Carbon Emissions. Turkish J Sci Technol 2025;20:209–24.
  • Bakanlığı D. Viyana Sözleşmesi ve Montreal Protokolü n.d.
  • Müdürlüğü ÇY genel. Türkiye, İklim Değişikliğini olumsuz etkileyen Florlu Sera Gazlarının azaltımını hedefleyen Kigali Değişikliğini onayladı n.d.
  • Troch SV. Harmonızatıon of lıfe cycle clımate performance and ıts ımprovement for heat pump applıcatıons. MSc, University of Maryland, Washington DC, United States, 2016.
  • Troch S, Lee H, Hwang Y, Radermacher R. Methodology Harmonization of the Life Cycle Climate Performance Methodology. Int Refrig Air Cond Conf 2016.
  • Life Cycle Climate Performance Working Group. Guideline for Life Cycle Climate Performance January 2016. Int Inst Refrig 2016:1–26.
  • Wan H, Cao T, Hwang Y, Radermacher R, Andersen SO, Chin S. A comprehensive review of life cycle climate performance (LCCP) for air conditioning systems. Int J Refrig 2021;130:187–98.
  • Winkler J, Das S, Earle L, Burkett L, Robertson J, Roberts D, et al. Impact of installation faults in air conditioners and heat pumps in single-family homes on U.S. energy usage. Appl Energy 2020;278:115533.
There are 33 citations in total.

Details

Primary Language English
Subjects Energy
Journal Section TJST
Authors

Nurcan Çalhan 0000-0002-4311-9162

Mert Gürtürk 0000-0003-0380-5704

Publication Date September 30, 2025
Submission Date December 31, 2024
Acceptance Date July 6, 2025
Published in Issue Year 2025 Volume: 20 Issue: 2

Cite

APA Çalhan, N., & Gürtürk, M. (2025). A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode. Turkish Journal of Science and Technology, 20(2), 355-369. https://doi.org/10.55525/tjst.1610926
AMA Çalhan N, Gürtürk M. A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode. TJST. September 2025;20(2):355-369. doi:10.55525/tjst.1610926
Chicago Çalhan, Nurcan, and Mert Gürtürk. “A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode”. Turkish Journal of Science and Technology 20, no. 2 (September 2025): 355-69. https://doi.org/10.55525/tjst.1610926.
EndNote Çalhan N, Gürtürk M (September 1, 2025) A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode. Turkish Journal of Science and Technology 20 2 355–369.
IEEE N. Çalhan and M. Gürtürk, “A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode”, TJST, vol. 20, no. 2, pp. 355–369, 2025, doi: 10.55525/tjst.1610926.
ISNAD Çalhan, Nurcan - Gürtürk, Mert. “A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode”. Turkish Journal of Science and Technology 20/2 (September2025), 355-369. https://doi.org/10.55525/tjst.1610926.
JAMA Çalhan N, Gürtürk M. A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode. TJST. 2025;20:355–369.
MLA Çalhan, Nurcan and Mert Gürtürk. “A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode”. Turkish Journal of Science and Technology, vol. 20, no. 2, 2025, pp. 355-69, doi:10.55525/tjst.1610926.
Vancouver Çalhan N, Gürtürk M. A Research of Carbon Emissions Caused by Installation Faults in Air Conditioners Used in Heating Mode. TJST. 2025;20(2):355-69.