Research Article
BibTex RIS Cite

Malzeme Biliminde Gelişmeler Yarı Metalik Heusler Alaşımlarının Yapısal Manyetik ve Enerji Spintronik Teknolojilerindeki Yenilikler

Year 2025, Volume: 20 Issue: 2, 541 - 550, 30.09.2025
https://doi.org/10.55525/tjst.1654241

Abstract

Yarı metalik Heusler alaşımları, spintronik ve termoelektrik uygulamalar için büyük potansiyele sahip malzemelerdir. Bu alaşımlar, bir spin yönünde metalik iletkenlik gösterirken diğer spin yönünde yalıtkan gibi davranarak %100’e yakın spin kutuplaşması sağlar. Bu özellik, manyetik tünel eklemleri (MTJ’ler), manyetik rastgele erişimli bellekler ve spin bazlı transistörler gibi spintronik cihazlar için kritik öneme sahiptir. Bu çalışma, Heusler alaşımlarının elektronik, manyetik ve yapısal özelliklerini inceleyerek üretim yöntemleri, atomik düzenlenme ve yoğunluk fonksiyonel teorisi (DFT) ile modellenmesine odaklanmaktadır. DFT tabanlı hesaplamalar, bant yapıları, spin kutuplaşması ve manyetik özelliklerin tahmin edilmesinde önemli bir araçtır. Ayrıca, düzensizlik, gerilim ve bileşim değişimlerinin malzeme özellikleri üzerindeki etkisi analiz edilerek performans optimizasyonu stratejileri ele alınmaktadır. Heusler alaşımlarının spintronik bellek cihazları, termoelektrik enerji dönüşümü ve kuantum teknolojilerinde kullanım potansiyeli değerlendirilmektedir. Teorik ve deneysel yaklaşımların birleştirilmesiyle, bu malzemelerin ileri teknoloji uygulamalarındaki rolüne dair kapsamlı bir bakış sunulmaktadır.

References

  • Tavares S, Yang K, Meyers MA. Heusler alloys: Past, properties, new alloys, and prospects. Prog Mater Sci 2023; 132: 101017.
  • Rogl G, et al. Mechanical properties of half-Heusler alloys. Acta Mater 2016; 107: 178-195.
  • De Groot R, Mueller F, van Engen P, Buschow K. New class of materials: half-metallic ferromagnets. Phys Rev Lett 1983; 50(25): 2024.
  • Dederichs P, Galanakis I, Mavropoulos P. Half-metallic alloys: electronic structure, magnetism and spin polarization. Microscopy 2005; 54(suppl_1): i53-i56.
  • Elphick K, et al. Heusler alloys for spintronic devices: review on recent development and future perspectives. Sci Technol Adv Mater 2021; 22(1): 235-271.
  • Poon GJ. Electronic and thermoelectric properties of half-Heusler alloys. In: Semiconductors and semimetals. Elsevier; 2001. p. 37-75.
  • Oogane M, Mizukami S. Tunnel magnetoresistance effect and magnetic damping in half-metallic Heusler alloys. Philos Trans R Soc A 2011; 369(1948): 3037-3053.
  • Herran J, Carlile R, Kharel P, Lukashev PV. Half-metallicity in CrAl-terminated Co2CrAl thin film. J Phys Condens Matter 2019; 31(49): 495801.
  • Heusler F., Über magnetische manganlegierungen. Verh Dtsch Phys Ges. 1903; 5(12): p. 219.
  • Felser C, Hirohata A. Heusler alloys. Springer 2015; Vol. 222.
  • Felser C, et al., Basics and prospectives of magnetic Heusler compounds. Heusler Alloys: Properties, Growth, Applications 2016); p. 37-48.
  • Hirohata A, et al. Heusler alloy/semiconductor hybrid structures. Curr Opin Solid State Mater Sci 2006; 10(2): 93-107.
  • Wurmehl S, Wójcik M. Structural order in Heusler compounds. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2015. p. 87-109.
  • Hirohata A, Sagar J, Fleet LR, Parkin SS. Heusler alloy films for spintronic devices. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2016. p. 219-248.
  • Takahashi YK, Hono K. Spin polarization in Heusler alloy films. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2016. p. 295-318.
  • Krez J, Balke B. Thermoelectric Heusler Compounds. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2015. p. 249-267.
  • Song Y, Leighton C, James RD. Thermodynamics and energy conversion in Heusler alloys. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2015. p. 269-291.
  • X.-P. Wei, et al., Half-metallic properties for the Ti2YZ (Y= Fe, Co, Ni, Z= Al, Ga, In) Heusler alloys: a first-principles study, Intermetallics. (2012). 29: p. 86-91.
  • Han Y, et al. Prediction of possible martensitic transformations in all-d-metal zinc-based Heusler alloys from first-principles. J Magn Magn Mater. 2019;471:49–55.
  • Xie C, et al. Magnetic Weyl and quadratic nodal lines in inverse-Heusler-based fully compensated ferrimagnetic half-metals. Phys Rev Mater 2022; 6(9): 094406.
  • Wederni A, et al. Crystal structure and properties of Heusler alloys: a comprehensive review. Metals. 2024;14(6):688.
  • Sun Y, et al. Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials. Front Chem. 2022;10:865281.
  • Bruski P, et al. Disorder-induced reversal of spin polarization in the Heusler alloy Co2FeSi. Phys Rev B. 2011;83(14):140409.
  • Rajanikanth A, Takahashi Y, Hono K. Spin polarization of Co2MnGe and Co2MnSi thin films with A2 and L21 structures. J Appl Phys. 2007;101(2).
  • Al-Douri Y, Ameri M. Physical studies of spintronics-based Heusler alloys. Crit Rev Solid State Mater Sci. 2024;1–50.
  • Fang CM, De Wijs G, De Groot R. Spin-polarization in half-metals. J Appl Phys. 2002;91(10):8340–8344.
  • Galanakis I, Mavropoulos P, Dederichs P. Introduction to half-metallic Heusler alloys: electronic structure and magnetic properties. arXiv Prepr cond-mat/0510276. 2005.
  • Rahman A, et al. Critical behaviour in the half-metallic Heusler alloy Co2TiSn. Phys Rev B. 2019;100(21):214419.
  • Malozemoff A, Williams A, Moruzzi V. "Band-gap theory" of strong ferromagnetism: application to concentrated crystalline and amorphous Fe- and Co-metalloid alloys. Phys Rev B. 1984;29(4):1620.
  • Idrissi S, et al. Half-metallic behaviour and magnetic properties of the quaternary Heusler alloys YFeCrZ (Z = Al, Sb and Sn). J Alloys Compd. 2020;820:153373.
  • Buchelnikov VD, et al. Prediction of a Heusler alloy with switchable metal-to-half-metal behavior. Phys Rev B. 2021;103(5):054414.
  • Sedeek K, et al. Unordinary ferromagnetic phase transitions in Mn- and Fe-doped half-Heusler CoTiSb. J Supercond Nov Magn. 2018;31:437–447.
  • Galanakis I. Electronic and magnetic properties of the normal and quaternary full-Heusler alloys: the quest for new half-metallic ferromagnets. In: New Dev Ferromagn Res. 2005:79.
  • Huang H-L, Tung J-C, Guo G-Y. Anomalous Hall effect and current spin polarization in Co2FeX Heusler compounds (X = Al, Ga, In, Si, Ge, and Sn): A systematic ab initio study. Phys Rev B 2015; 91(13): 134409.
  • Graf T, Parkin SS, Felser C. Heusler compounds-A material class with exceptional properties. IEEE Trans Magn 2010; 47(2): 367-373.
  • Ray SC. Magnetism and spintronics in carbon and carbon nanostructured materials. Elsevier; 2020.
  • Jourdan M, et al. Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat Commun 2014; 5(1): 3974.
  • Ahmed S, Boyer C, Niewczas M. Magnetic and structural properties of Co2MnSi based Heusler compound. J Alloys Compd. 2019;781:216–225.
  • Inomata K, et al. Highly spin-polarized materials and devices for spintronics. Sci Technol Adv Mater. 2008;9(1):014101.
  • Galanakis I, Mavropoulos P. Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles. J Phys Condens Matter. 2007;19(31):315213.
  • Bai Z, et al. Data storage: review of Heusler compounds. In: Spin. 2012. Singapore: World Scientific.
  • Aladerah B, Obeidat A, Aledealat K. A computational exploration of the electronic, mechanical, and magnetic properties of Co2A1-xBxAl full Heusler alloys (A, B = Cr, Mn, and Fe). Mater Today Commun. 2024; 38:108378.
  • Wurmehl S, et al. Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys Rev B. 2005;72(18):184434.
  • Alhuwaymel TF, et al. New bandgap measurement technique for a half-metallic ferromagnet. IEEE Trans Magn. 2014;50(11):1–4.
  • Picozzi S, Continenza A, Freeman A. Role of structural defects on the half-metallic character of Co2MnGe and Co2MnSi Heusler alloys. Phys Rev B. 2004;69(9):094423.
  • Salaheldeen M, et al. Preparation and magneto-structural investigation of high-ordered (L21 structure) Co2MnGe microwires. Processes. 2023;11(4):1138.
  • Dubowik J, et al. Structure and magnetism of Co2CrAl Heusler alloy films. Mater Sci (Poland). 2007;25(4).
  • Muhammad, I.; Zhang, J.-M.; Ali, A.; Huang, Y.-H.; Wei, X.-M.; Muhammad, S.; Mushtaq, M. Bandgap engineering of the (001) oriented thin-films of the Heusler alloys Co2-xFexCrAl (x = 0.00, 0.25, 0.50, 0.75 or 1.00). Thin Solid Films 2020, 713, 138341.
  • Hamad B. Investigations of the electronic and magnetic structures of Co2YGa (Y = Cr, Mn) Heusler alloys and their (100) surfaces. J Appl Phys. 2014;115(11).
  • Rambabu P, et al. Enhanced Curie temperature and spin polarization in Co-based compounds under pressure: a first-principles investigation. Solid State Sci. 2020; 105:106257.
  • Uvarov N, et al. Electronic structure, optical and magnetic properties of Co2FeGe Heusler alloy films. J Appl Phys. 2012;112(6).
  • Raïâ M, et al. Effect of Ti doping on phase stability and half-metallicity of the Co2FeGe compound: GGA and mBJ-GGA approaches. Mater Sci Semicond Process. 2025; 185:108914.
  • Saleem M, Shakil M. A comprehensive investigation of structural and magnetic phase stability, electronic, magnetic and thermoelectric properties of Co2FeZ (Z = Al, Ga, Si, Ge, S, Se and Te) full Heusler alloys. Solid State Commun. 2022; 355:114947.
  • Geiersbach U, Bergmann A, Westerholt K. Structural, magnetic and magnetotransport properties of thin films of the Heusler alloys Cu2MnAl, Co2MnSi, Co2MnGe and Co2MnSn. J Magn Magn Mater. 2002;240(1–3):546–549.
  • Westerholt K, et al. Magnetism and structure of magnetic multilayers based on the fully spin polarized Heusler alloys Co2MnGe and Co2MnSn. In: Half-Metallic Alloys: Fundamentals and Applications. 2005:67–112.
  • Lee SC. High-efficient and defect tolerant Co2MnSb ternary Heusler alloy for spintronic application. J Alloys Compd. 2018; 765:1055–1060.
  • Rai D, et al. Electronic and magnetic properties of X2YZ and XYZ Heusler compounds: a comparative study of density functional theory with different exchange-correlation potentials. Mater Res Express. 2016;3(7):075022.
  • Miroshkina ON, et al. Electronic and vibrational properties of Fe2NiAl and Co2NiAl full Heusler alloys: a first-principles comparison. IEEE Trans Magn. 2022;58(8):1–5.
  • Bach P, et al. Molecular-beam epitaxy of the half-Heusler alloy NiMnSb on (In, Ga)As/InP (001). Appl Phys Lett. 2003;83(3):521–523.
  • Galanakis I, Mavropoulos P, Dederichs PH. Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J Phys D Appl Phys. 2006;39(5):765.
  • Barth J, et al. Thermoelectric properties of CoTiSb based compounds. J Phys D Appl Phys. 2009;42(18):185401.
  • Wang L, et al. Single spin channels in Fe-doped CoTiSb semiconductor. Superlattices Microstruct. 2015; 83:261–270.
  • Terada M, et al. Magnetic properties of Clb compounds; CoVSb, CoTiSb and NiTiSb. J Phys Soc Jpn. 1972;32(1):91–94.
  • Shastri SS, Pandey SK. First-principles electronic structure, phonon properties, lattice thermal conductivity and prediction of figure of merit of FeVSb half-Heusler. J Phys Condens Matter. 2020;33(8):085704.
  • Cookl B, et al. Properties of MNiSn (M = Ti, Zr, Hf). qISCLAIMER. 1999:88.
  • Jaradat A, Abu-Rajouh S, Obeidat A. Influence of chromium doping on the properties of Co2FeGe full Heusler alloys: First-principles calculations and Monte Carlo simulations. Phys Lett A 2025; 532: 130211.
  • Hütten A, et al. Spin-electronic devices with half-metallic Heusler alloys. J Alloys Compd 2006; 423(1–2): 148–152.
  • Shelyakov A, et al. Development of two-way shape memory material on the basis of amorphous–crystalline TiNiCu melt-spun ribbons for micromechanical applications. Mater Sci Found 2015; 81: 532–553.
  • Ryba T, et al. Structural and magnetic characterization of half-metallic Co2MnAl Heusler alloy. IEEE Trans Magn. 2015;51(1):1–3.
  • Galdun L, et al. Influence of Mn doping on magnetic and structural properties of Co2FeSi Heusler alloy. Acta Phys Pol A. 2017;131(4):866–868.
  • Aqida S, et al. Rapid solidification processing and bulk metallic glass casting. 2023.
  • Mazin II. How to define and calculate the degree of spin polarization in ferromagnets. Phys Rev Lett. 1999;83(7):1427.
  • Meservey R, Tedrow P. Spin-polarized electron tunneling. Phys Rep. 1994;238(4):173–243.
  • Žutić I, Fabian J, Sarma SD. Spintronics: fundamentals and applications. Rev Mod Phys. 2004;76(2):323.
  • Gupta DC. Quaternary Heusler alloys: A future perspective for revolutionizing conventional semiconductor technology. J Alloys Compd 2021; 871: 159560.
  • Guo X, et al. Magnetic semiconductors and half-metals in FeRu-based quaternary Heusler alloys. Comput Mater Sci. 2018; 154:442–448.
  • Farshchi R, Ramsteiner M. Spin injection from Heusler alloys into semiconductors: a materials perspective. J Appl Phys. 2013;113(19).
  • Shi F, et al. Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors. J Appl Phys. 2017;122(21).
  • Galanakis I. Slater–Pauling behaviour in half-metallic Heusler compounds. Nanomaterials. 2023;13(13):2010.
  • Casper F, et al. Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond Sci Technol. 2012;27(6):063001.
  • Fiedler G, Kratzer P. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: a first-principles study. Phys Rev B. 2016;94(7):075203.
  • Lim WYS, et al. A systematic approach for semiconductor half-Heusler. Front Mater. 2021; 8:745698.
  • Mingo N. Thermoelectric figure of merit of II–VI semiconductor nanowires. Appl Phys Lett. 2004;85(24):5986–5988.
  • Simon R. Thermoelectric figure of merit of two‐band semiconductors. J Appl Phys. 1962;33(5):1830–1841.
  • Matth S, et al. Investigation on lithiated half‐Heusler alloy CoMnSi for lithium‐ion batteries. Energy Storage. 2024;6(7): e70063.
  • Amrich O, et al. Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J Supercond Nov Magn. 2018; 31:241–250.
  • Idrissi S, et al. Investigation of the physical properties of the equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge): a DFT study. Appl Phys A. 2020;126(3):190.
  • Amiri P, et al. The investigation of the half-metallic properties of half-Heusler KXP (X = Cr & Mo) compounds: A first-principles study. J Phys Chem Solids 2022; 160: 110294
  • Iyorzor B, Babalola M. Half-metallic characteristics of the novel half-Heusler alloys XCrSb (X = Ti, Zr, Hf). J Niger Soc Phys Sci. 2022:138–145.
  • Dhakshayani Y, Suganya G, Kalpana G. DFT studies on electronic, magnetic and thermoelectric properties of half-Heusler alloys XCaB (X = Li, Na, K and Rb). J Cryst Growth. 2022; 583:126550.
  • Butt MK, et al. Structural, electronic, half–metallic ferromagnetic and optical properties of cubic MAlO3 (M = Ce, Pr) perovskites: a DFT study. J Phys Chem Solids. 2021; 154:110084.
  • Ram M, et al. Half-metallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn). RSC Adv. 2020;10(13):7661–7670.

Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies

Year 2025, Volume: 20 Issue: 2, 541 - 550, 30.09.2025
https://doi.org/10.55525/tjst.1654241

Abstract

Half-metallic Heusler alloys are promising materials for spintronic and thermoelectric applications. These alloys exhibit metallic conductivity in one spin direction while acting as insulators in the opposite spin direction, enabling nearly 100% spin polarization. This property is crucial for spintronic devices such as magnetic tunnel junctions (MTJs), magnetic random-access memories, and spin-based transistors. This study investigates the electronic, magnetic, and structural properties of Heusler alloys, focusing on their synthesis methods, atomic ordering, and modelling via density functional theory (DFT). DFT-based calculations serve as a key tool for predicting band structures, spin polarization, and magnetic properties. Additionally, the effects of disorder, strain, and compositional changes on material properties are analysed to explore performance optimization strategies. The potential applications of Heusler alloys in spintronic memory devices, thermoelectric energy conversion, and quantum technologies are also discussed. This work is presented as a review article and systematically compiles and interprets findings from the existing literature to provide a broad understanding of the topic. By integrating theoretical and experimental approaches, this study provides a comprehensive overview of the role of these materials in advanced technological applications.

References

  • Tavares S, Yang K, Meyers MA. Heusler alloys: Past, properties, new alloys, and prospects. Prog Mater Sci 2023; 132: 101017.
  • Rogl G, et al. Mechanical properties of half-Heusler alloys. Acta Mater 2016; 107: 178-195.
  • De Groot R, Mueller F, van Engen P, Buschow K. New class of materials: half-metallic ferromagnets. Phys Rev Lett 1983; 50(25): 2024.
  • Dederichs P, Galanakis I, Mavropoulos P. Half-metallic alloys: electronic structure, magnetism and spin polarization. Microscopy 2005; 54(suppl_1): i53-i56.
  • Elphick K, et al. Heusler alloys for spintronic devices: review on recent development and future perspectives. Sci Technol Adv Mater 2021; 22(1): 235-271.
  • Poon GJ. Electronic and thermoelectric properties of half-Heusler alloys. In: Semiconductors and semimetals. Elsevier; 2001. p. 37-75.
  • Oogane M, Mizukami S. Tunnel magnetoresistance effect and magnetic damping in half-metallic Heusler alloys. Philos Trans R Soc A 2011; 369(1948): 3037-3053.
  • Herran J, Carlile R, Kharel P, Lukashev PV. Half-metallicity in CrAl-terminated Co2CrAl thin film. J Phys Condens Matter 2019; 31(49): 495801.
  • Heusler F., Über magnetische manganlegierungen. Verh Dtsch Phys Ges. 1903; 5(12): p. 219.
  • Felser C, Hirohata A. Heusler alloys. Springer 2015; Vol. 222.
  • Felser C, et al., Basics and prospectives of magnetic Heusler compounds. Heusler Alloys: Properties, Growth, Applications 2016); p. 37-48.
  • Hirohata A, et al. Heusler alloy/semiconductor hybrid structures. Curr Opin Solid State Mater Sci 2006; 10(2): 93-107.
  • Wurmehl S, Wójcik M. Structural order in Heusler compounds. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2015. p. 87-109.
  • Hirohata A, Sagar J, Fleet LR, Parkin SS. Heusler alloy films for spintronic devices. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2016. p. 219-248.
  • Takahashi YK, Hono K. Spin polarization in Heusler alloy films. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2016. p. 295-318.
  • Krez J, Balke B. Thermoelectric Heusler Compounds. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2015. p. 249-267.
  • Song Y, Leighton C, James RD. Thermodynamics and energy conversion in Heusler alloys. In: Heusler Alloys: Properties, Growth, Applications. Springer; 2015. p. 269-291.
  • X.-P. Wei, et al., Half-metallic properties for the Ti2YZ (Y= Fe, Co, Ni, Z= Al, Ga, In) Heusler alloys: a first-principles study, Intermetallics. (2012). 29: p. 86-91.
  • Han Y, et al. Prediction of possible martensitic transformations in all-d-metal zinc-based Heusler alloys from first-principles. J Magn Magn Mater. 2019;471:49–55.
  • Xie C, et al. Magnetic Weyl and quadratic nodal lines in inverse-Heusler-based fully compensated ferrimagnetic half-metals. Phys Rev Mater 2022; 6(9): 094406.
  • Wederni A, et al. Crystal structure and properties of Heusler alloys: a comprehensive review. Metals. 2024;14(6):688.
  • Sun Y, et al. Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials. Front Chem. 2022;10:865281.
  • Bruski P, et al. Disorder-induced reversal of spin polarization in the Heusler alloy Co2FeSi. Phys Rev B. 2011;83(14):140409.
  • Rajanikanth A, Takahashi Y, Hono K. Spin polarization of Co2MnGe and Co2MnSi thin films with A2 and L21 structures. J Appl Phys. 2007;101(2).
  • Al-Douri Y, Ameri M. Physical studies of spintronics-based Heusler alloys. Crit Rev Solid State Mater Sci. 2024;1–50.
  • Fang CM, De Wijs G, De Groot R. Spin-polarization in half-metals. J Appl Phys. 2002;91(10):8340–8344.
  • Galanakis I, Mavropoulos P, Dederichs P. Introduction to half-metallic Heusler alloys: electronic structure and magnetic properties. arXiv Prepr cond-mat/0510276. 2005.
  • Rahman A, et al. Critical behaviour in the half-metallic Heusler alloy Co2TiSn. Phys Rev B. 2019;100(21):214419.
  • Malozemoff A, Williams A, Moruzzi V. "Band-gap theory" of strong ferromagnetism: application to concentrated crystalline and amorphous Fe- and Co-metalloid alloys. Phys Rev B. 1984;29(4):1620.
  • Idrissi S, et al. Half-metallic behaviour and magnetic properties of the quaternary Heusler alloys YFeCrZ (Z = Al, Sb and Sn). J Alloys Compd. 2020;820:153373.
  • Buchelnikov VD, et al. Prediction of a Heusler alloy with switchable metal-to-half-metal behavior. Phys Rev B. 2021;103(5):054414.
  • Sedeek K, et al. Unordinary ferromagnetic phase transitions in Mn- and Fe-doped half-Heusler CoTiSb. J Supercond Nov Magn. 2018;31:437–447.
  • Galanakis I. Electronic and magnetic properties of the normal and quaternary full-Heusler alloys: the quest for new half-metallic ferromagnets. In: New Dev Ferromagn Res. 2005:79.
  • Huang H-L, Tung J-C, Guo G-Y. Anomalous Hall effect and current spin polarization in Co2FeX Heusler compounds (X = Al, Ga, In, Si, Ge, and Sn): A systematic ab initio study. Phys Rev B 2015; 91(13): 134409.
  • Graf T, Parkin SS, Felser C. Heusler compounds-A material class with exceptional properties. IEEE Trans Magn 2010; 47(2): 367-373.
  • Ray SC. Magnetism and spintronics in carbon and carbon nanostructured materials. Elsevier; 2020.
  • Jourdan M, et al. Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat Commun 2014; 5(1): 3974.
  • Ahmed S, Boyer C, Niewczas M. Magnetic and structural properties of Co2MnSi based Heusler compound. J Alloys Compd. 2019;781:216–225.
  • Inomata K, et al. Highly spin-polarized materials and devices for spintronics. Sci Technol Adv Mater. 2008;9(1):014101.
  • Galanakis I, Mavropoulos P. Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles. J Phys Condens Matter. 2007;19(31):315213.
  • Bai Z, et al. Data storage: review of Heusler compounds. In: Spin. 2012. Singapore: World Scientific.
  • Aladerah B, Obeidat A, Aledealat K. A computational exploration of the electronic, mechanical, and magnetic properties of Co2A1-xBxAl full Heusler alloys (A, B = Cr, Mn, and Fe). Mater Today Commun. 2024; 38:108378.
  • Wurmehl S, et al. Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys Rev B. 2005;72(18):184434.
  • Alhuwaymel TF, et al. New bandgap measurement technique for a half-metallic ferromagnet. IEEE Trans Magn. 2014;50(11):1–4.
  • Picozzi S, Continenza A, Freeman A. Role of structural defects on the half-metallic character of Co2MnGe and Co2MnSi Heusler alloys. Phys Rev B. 2004;69(9):094423.
  • Salaheldeen M, et al. Preparation and magneto-structural investigation of high-ordered (L21 structure) Co2MnGe microwires. Processes. 2023;11(4):1138.
  • Dubowik J, et al. Structure and magnetism of Co2CrAl Heusler alloy films. Mater Sci (Poland). 2007;25(4).
  • Muhammad, I.; Zhang, J.-M.; Ali, A.; Huang, Y.-H.; Wei, X.-M.; Muhammad, S.; Mushtaq, M. Bandgap engineering of the (001) oriented thin-films of the Heusler alloys Co2-xFexCrAl (x = 0.00, 0.25, 0.50, 0.75 or 1.00). Thin Solid Films 2020, 713, 138341.
  • Hamad B. Investigations of the electronic and magnetic structures of Co2YGa (Y = Cr, Mn) Heusler alloys and their (100) surfaces. J Appl Phys. 2014;115(11).
  • Rambabu P, et al. Enhanced Curie temperature and spin polarization in Co-based compounds under pressure: a first-principles investigation. Solid State Sci. 2020; 105:106257.
  • Uvarov N, et al. Electronic structure, optical and magnetic properties of Co2FeGe Heusler alloy films. J Appl Phys. 2012;112(6).
  • Raïâ M, et al. Effect of Ti doping on phase stability and half-metallicity of the Co2FeGe compound: GGA and mBJ-GGA approaches. Mater Sci Semicond Process. 2025; 185:108914.
  • Saleem M, Shakil M. A comprehensive investigation of structural and magnetic phase stability, electronic, magnetic and thermoelectric properties of Co2FeZ (Z = Al, Ga, Si, Ge, S, Se and Te) full Heusler alloys. Solid State Commun. 2022; 355:114947.
  • Geiersbach U, Bergmann A, Westerholt K. Structural, magnetic and magnetotransport properties of thin films of the Heusler alloys Cu2MnAl, Co2MnSi, Co2MnGe and Co2MnSn. J Magn Magn Mater. 2002;240(1–3):546–549.
  • Westerholt K, et al. Magnetism and structure of magnetic multilayers based on the fully spin polarized Heusler alloys Co2MnGe and Co2MnSn. In: Half-Metallic Alloys: Fundamentals and Applications. 2005:67–112.
  • Lee SC. High-efficient and defect tolerant Co2MnSb ternary Heusler alloy for spintronic application. J Alloys Compd. 2018; 765:1055–1060.
  • Rai D, et al. Electronic and magnetic properties of X2YZ and XYZ Heusler compounds: a comparative study of density functional theory with different exchange-correlation potentials. Mater Res Express. 2016;3(7):075022.
  • Miroshkina ON, et al. Electronic and vibrational properties of Fe2NiAl and Co2NiAl full Heusler alloys: a first-principles comparison. IEEE Trans Magn. 2022;58(8):1–5.
  • Bach P, et al. Molecular-beam epitaxy of the half-Heusler alloy NiMnSb on (In, Ga)As/InP (001). Appl Phys Lett. 2003;83(3):521–523.
  • Galanakis I, Mavropoulos P, Dederichs PH. Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J Phys D Appl Phys. 2006;39(5):765.
  • Barth J, et al. Thermoelectric properties of CoTiSb based compounds. J Phys D Appl Phys. 2009;42(18):185401.
  • Wang L, et al. Single spin channels in Fe-doped CoTiSb semiconductor. Superlattices Microstruct. 2015; 83:261–270.
  • Terada M, et al. Magnetic properties of Clb compounds; CoVSb, CoTiSb and NiTiSb. J Phys Soc Jpn. 1972;32(1):91–94.
  • Shastri SS, Pandey SK. First-principles electronic structure, phonon properties, lattice thermal conductivity and prediction of figure of merit of FeVSb half-Heusler. J Phys Condens Matter. 2020;33(8):085704.
  • Cookl B, et al. Properties of MNiSn (M = Ti, Zr, Hf). qISCLAIMER. 1999:88.
  • Jaradat A, Abu-Rajouh S, Obeidat A. Influence of chromium doping on the properties of Co2FeGe full Heusler alloys: First-principles calculations and Monte Carlo simulations. Phys Lett A 2025; 532: 130211.
  • Hütten A, et al. Spin-electronic devices with half-metallic Heusler alloys. J Alloys Compd 2006; 423(1–2): 148–152.
  • Shelyakov A, et al. Development of two-way shape memory material on the basis of amorphous–crystalline TiNiCu melt-spun ribbons for micromechanical applications. Mater Sci Found 2015; 81: 532–553.
  • Ryba T, et al. Structural and magnetic characterization of half-metallic Co2MnAl Heusler alloy. IEEE Trans Magn. 2015;51(1):1–3.
  • Galdun L, et al. Influence of Mn doping on magnetic and structural properties of Co2FeSi Heusler alloy. Acta Phys Pol A. 2017;131(4):866–868.
  • Aqida S, et al. Rapid solidification processing and bulk metallic glass casting. 2023.
  • Mazin II. How to define and calculate the degree of spin polarization in ferromagnets. Phys Rev Lett. 1999;83(7):1427.
  • Meservey R, Tedrow P. Spin-polarized electron tunneling. Phys Rep. 1994;238(4):173–243.
  • Žutić I, Fabian J, Sarma SD. Spintronics: fundamentals and applications. Rev Mod Phys. 2004;76(2):323.
  • Gupta DC. Quaternary Heusler alloys: A future perspective for revolutionizing conventional semiconductor technology. J Alloys Compd 2021; 871: 159560.
  • Guo X, et al. Magnetic semiconductors and half-metals in FeRu-based quaternary Heusler alloys. Comput Mater Sci. 2018; 154:442–448.
  • Farshchi R, Ramsteiner M. Spin injection from Heusler alloys into semiconductors: a materials perspective. J Appl Phys. 2013;113(19).
  • Shi F, et al. Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors. J Appl Phys. 2017;122(21).
  • Galanakis I. Slater–Pauling behaviour in half-metallic Heusler compounds. Nanomaterials. 2023;13(13):2010.
  • Casper F, et al. Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond Sci Technol. 2012;27(6):063001.
  • Fiedler G, Kratzer P. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: a first-principles study. Phys Rev B. 2016;94(7):075203.
  • Lim WYS, et al. A systematic approach for semiconductor half-Heusler. Front Mater. 2021; 8:745698.
  • Mingo N. Thermoelectric figure of merit of II–VI semiconductor nanowires. Appl Phys Lett. 2004;85(24):5986–5988.
  • Simon R. Thermoelectric figure of merit of two‐band semiconductors. J Appl Phys. 1962;33(5):1830–1841.
  • Matth S, et al. Investigation on lithiated half‐Heusler alloy CoMnSi for lithium‐ion batteries. Energy Storage. 2024;6(7): e70063.
  • Amrich O, et al. Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J Supercond Nov Magn. 2018; 31:241–250.
  • Idrissi S, et al. Investigation of the physical properties of the equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge): a DFT study. Appl Phys A. 2020;126(3):190.
  • Amiri P, et al. The investigation of the half-metallic properties of half-Heusler KXP (X = Cr & Mo) compounds: A first-principles study. J Phys Chem Solids 2022; 160: 110294
  • Iyorzor B, Babalola M. Half-metallic characteristics of the novel half-Heusler alloys XCrSb (X = Ti, Zr, Hf). J Niger Soc Phys Sci. 2022:138–145.
  • Dhakshayani Y, Suganya G, Kalpana G. DFT studies on electronic, magnetic and thermoelectric properties of half-Heusler alloys XCaB (X = Li, Na, K and Rb). J Cryst Growth. 2022; 583:126550.
  • Butt MK, et al. Structural, electronic, half–metallic ferromagnetic and optical properties of cubic MAlO3 (M = Ce, Pr) perovskites: a DFT study. J Phys Chem Solids. 2021; 154:110084.
  • Ram M, et al. Half-metallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn). RSC Adv. 2020;10(13):7661–7670.
There are 92 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section TJST
Authors

Ece Kalay 0000-0003-2470-7791

İskender Özkul 0000-0003-4255-0564

Ömer Güler 0000-0003-0190-9630

Canan Aksu Canbay 0000-0002-5151-4576

Publication Date September 30, 2025
Submission Date March 9, 2025
Acceptance Date September 17, 2025
Published in Issue Year 2025 Volume: 20 Issue: 2

Cite

APA Kalay, E., Özkul, İ., Güler, Ö., Aksu Canbay, C. (2025). Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies. Turkish Journal of Science and Technology, 20(2), 541-550. https://doi.org/10.55525/tjst.1654241
AMA Kalay E, Özkul İ, Güler Ö, Aksu Canbay C. Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies. TJST. September 2025;20(2):541-550. doi:10.55525/tjst.1654241
Chicago Kalay, Ece, İskender Özkul, Ömer Güler, and Canan Aksu Canbay. “Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies”. Turkish Journal of Science and Technology 20, no. 2 (September 2025): 541-50. https://doi.org/10.55525/tjst.1654241.
EndNote Kalay E, Özkul İ, Güler Ö, Aksu Canbay C (September 1, 2025) Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies. Turkish Journal of Science and Technology 20 2 541–550.
IEEE E. Kalay, İ. Özkul, Ö. Güler, and C. Aksu Canbay, “Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies”, TJST, vol. 20, no. 2, pp. 541–550, 2025, doi: 10.55525/tjst.1654241.
ISNAD Kalay, Ece et al. “Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies”. Turkish Journal of Science and Technology 20/2 (September2025), 541-550. https://doi.org/10.55525/tjst.1654241.
JAMA Kalay E, Özkul İ, Güler Ö, Aksu Canbay C. Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies. TJST. 2025;20:541–550.
MLA Kalay, Ece et al. “Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies”. Turkish Journal of Science and Technology, vol. 20, no. 2, 2025, pp. 541-50, doi:10.55525/tjst.1654241.
Vancouver Kalay E, Özkul İ, Güler Ö, Aksu Canbay C. Advances in Materials Innovations in Half Metallic Heusler Alloys for Structural Magnetic and Energy Spintronic Technologies. TJST. 2025;20(2):541-50.