Research Article
BibTex RIS Cite

Laguerre Gauss Işınlarının Yüksek Dereceli Azimuthal İndekslerini Kullanan Yeni Bir Yörüngesel Açısal Momentum Kodlama Sistemi

Year 2025, Volume: 20 Issue: 2, 455 - 464, 30.09.2025
https://doi.org/10.55525/tjst.1667248

Abstract

Optik vorteks (OV) ışınlarındaki yörüngesel açısal momentum (OAM), uzay modunun yeni bir boyutunu sunar çünkü farklı azimuthal OAM durumlarına sahip eş eksenli olarak yayılan optik vorteks ışınları karşılıklı olarak ortogonaldir. Optik iletişim sisteminin kapasitesini potansiyel olarak artırmak için ışınlar verimli bir şekilde çoğullanabilir ve çoklanabilir. Bu nedenle, şimdiye kadar, enine uzamsal modun azimutal ve radyal indeksleri birçok kez araştırılmıştır. Bu makale, Laguerre Gaussian (LG) ışınının azimuthal indislerine odaklanmaktadır. Optik iletişim sistemi için simülasyon yoluyla yüksek dereceli azimuthal indekslere sahip türbülans ve gürültü etkisi altında yeni bir OAM kodlama sistemi kurulmuştur. Vericide, farklı azimuthal indekslere sahip Laguerre Gaussian modunun bir dizi hologramı, her bir ışının bir veri bitini temsil ettiği çoklama ışınlarının koaksiyel iletimini sağlamak için kullanılır. Alıcıda, çoklanmış ışınları çoğullamadan arındırmak için iletilen ışınlara karşılık gelen eşlenik ışık alanının süperpozisyonu kullanılır. Faz kaydırma faktörü ve centroid algoritmasının kombinasyonu, her kanaldaki azimuthal indekslerin eş zamanlı olarak algılanmasını ve bilginin verimli bir şekilde çözülmesini gerçekleştirir. Makalede bir kodlama sisteminin performansına dair tartışmaları veriyoruz. Simülasyon sonuçları, dört ortogonal LG modu (M = 4) kullanıldığında 20 dB SNR’de 18,802 bit/s/Hz’lik bir MIMO kapasitesi elde edildiğini göstermektedir. Bu, tek modlu iletimlere göre yaklaşık üç kat artış sağlarken, türbülans mod saflığını −6,02 dB’den −1,25 dB’ye düşürür ve ortalama −4,77 dB’lik bir çapraz konuşma oluşturmuştur.

References

  • Amiri I, Rashed ANZ, Yupapin P. High-Speed Light Sources in High-Speed Optical Passive Local Area Communication Networks. Journal of Optical Communications. 2023 Jan 27;44(1):61–7.
  • Yang Y, Li Y, Wang C. Generation and expansion of Laguerre–Gaussian beams. Journal of Optics. 2022 Dec 26;51(4):910–26.
  • Kenan CICEK. Characterisation of Orbital Angular Momentum Beam Emitter and Receiver. 2016;
  • Guo Z, Wang Z, Dedo MI, Guo K. The Orbital Angular Momentum Encoding System With Radial Indices of Laguerre–Gaussian Beam. IEEE Photonics J. 2018 Oct;10(5):1–11.
  • Agrawal G. Fiber-optic communication systems. 2012.
  • Liu X, Monfared YE, Pan R, Ma P, Cai Y, Liang C. Experimental realization of scalar and vector perfect Laguerre–Gaussian beams. Appl Phys Lett. 2021 Jul 12;119(2).
  • Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A (Coll Park). 1992 Jun 1;45(11):8185–9.
  • Guan B, Scott RP, Qin C, Fontaine NK, Su T, Ferrari C, et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt Express. 2014 Jan 13;22(1):145.
  • Su T, Scott RP, Djordjevic SS, Fontaine NK, Geisler DJ, Cai X, et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt Express. 2012 Apr 23;20(9):9396.
  • Fontaine NK, Doerr CR, Buhl LL. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In: Optical Fiber Communication Conference. Washington, D.C.: OSA; 2012. p. OTu1I.2.
  • Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12(22):5448.
  • Wang J, Yang J, Fazal I, Ahmed N, … YYN, 2012 undefined. Terabit free-space data transmission employing orbital angular momentum multiplexing. nature.comJ Wang, JY Yang, IM Fazal, N Ahmed, Y Yan, H Huang, Y Ren, Y Yue, S Dolinar, M TurNature photonics, 2012.
  • Bozinovic N. Orbital angular momentum in optical fibers. 2013.
  • Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics. 2011 Jun 1;13(6):064001.
  • Piccirillo B, D’Ambrosio V, Slussarenko S, Marrucci L, Santamato E. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl Phys Lett. 2010 Dec 13;97(24).
  • Marrucci L, Manzo C, Paparo D. Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media. Phys Rev Lett. 2006 Apr 28;96(16):163905.
  • Arfan M, Ghaffar A, Alkanhal MAS, Khan Y, Alqahtani AH, Ur Rehman S. Laguerre–Gaussian Beam Scattering by a Perfect Electromagnetic Conductor (PEMC) Sphere. Arab J Sci Eng. 2023 Jun 12;48(6):8001–9.
  • Ghaderi Goran Abad M, Mahmoudi M. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation. Sci Rep. 2021 Mar 16;11(1):5972.
  • Guo Z, Wang Z, Dedo MI, Guo K. The Orbital Angular Momentum Encoding System With Radial Indices of Laguerre–Gaussian Beam. IEEE Photonics J. 2018 Oct;10(5):1–11.
  • Aït-Ameur K. The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 Laser Beams. Photonics. 2024 Feb 27;11(3):217.
  • Rodenburg B, Lavery MPJ, Malik M, O’Sullivan MN, Mirhosseini M, Robertson DJ, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Opt Lett. 2012 Sep 1;37(17):3735.
  • Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express. 2012 Jun 4;20(12):13195.
  • Qu Z, Djordjevic IB. Orbital Angular Momentum Multiplexed Free-Space Optical Communication Systems Based on Coded Modulation. Applied Sciences. 2018 Nov 7;8(11):2179.
  • Zhao Z, Zhang R, Song H, Pang K, Almaiman A, Zhou H, et al. Modal coupling and crosstalk due to turbulence and divergence on free space THz links using multiple orbital angular momentum beams. Sci Rep. 2021 Jan 22;11(1):2110.
  • Ren Y, Wang Z, Xie G, Li L, Cao Y, Liu C, et al. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. Opt Lett. 2015 Sep 15;40(18):4210.
  • Willner AE, Pang K, Song H, Zou K, Zhou H. Orbital angular momentum of light for communications. Appl Phys Rev. 2021 Dec 1;8(4).
  • Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12(22):5448.
  • Song LM, Yang ZJ, Li XL, Zhang SM. Coherent superposition propagation of Laguerre–Gaussian and Hermite–Gaussian solitons. Appl Math Lett. 2020 Apr;102:106114.
  • O’Neil AT, Courtial J. Mode transformations in terms of the constituent Hermite–Gaussian or Laguerre–Gaussian modes and the variable-phase mode converter. Opt Commun. 2000 Jul;181(1–3):35–45.
  • Liu Y, Lin R, Wang F, Cai Y, Yu J. Propagation properties of Laguerre-Gaussian Schell-model beams with a twist phase. J Quant Spectrosc Radiat Transf. 2021 Apr;264:107556.
  • O’Neil AT, Courtial J. Mode transformations in terms of the constituent Hermite–Gaussian or Laguerre–Gaussian modes and the variable-phase mode converter. Opt Commun. 2000 Jul;181(1–3):35–45.
  • Li L, Xie G, Yan Y, Ren Y, Liao P, Zhao Z, et al. Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams. Journal of the Optical Society of America B. 2017 Jan 1;34(1):1.
  • Paterson C. Atmospheric Turbulence and Orbital Angular Momentum of Single Photons for Optical Communication. Phys Rev Lett. 2005 Apr 18;94(15):153901.
  • Prof. Warren Pickett. Matched Filter. 2018–2021 p.
  • Lou H, Ge X, Li Q. The New Purity and Capacity Models for the OAM-mmWave Communication Systems Under Atmospheric Turbulence. IEEE Access. 2019;7:129988–96.

A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams

Year 2025, Volume: 20 Issue: 2, 455 - 464, 30.09.2025
https://doi.org/10.55525/tjst.1667248

Abstract

Orbital angular momentum in optical vortex beams offers a new dimension of space mode because coaxially propagating optical vortex beams with different azimuthal orbital angular momentum states are mutually orthogonal. The optical vortex beams can be efficiently multiplexed and demultiplexed to increase the capacity of the optical communication system. Therefore, the azimuthal and radial indices of the transverse spatial mode have been investigated many times. This paper focused on the azimuthal indices of the Laguerre Gaussian beams and a novel orbital angular momentum coding system under the influence of turbulence and noise with high order azimuthal indices was established through simulations of an optical communication system in free space. At the transmitter, a series of holograms of Laguerre Gaussian mode with different azimuthal indices were used to achieve coaxial transmission of multiplexed beams, where each beam represented a data bit. At the receiver, superposition of the conjugate light field corresponding to the transmitted beams was used to demultiplex the multiplexed beams. The combination of the phase shift factor and the centroid algorithm were realized for simultaneous detection of the azimuthal indices in each channel and efficient decoding of the information. In this article, for the first time, multiplex and demultiplex were investigated by using the centroid algorithm, keeping the radial index constant and taking different positive and negative values of the azimuthal index. Simulation results show that using four orthogonal LG modes (M = 4) achieves a MIMO capacity of 18.802 bits/s/Hz at 20 dB SNR, providing about a threefold increase over single-mode transmission, while turbulence reduces mode purity to −6.02 dB to −1.25 dB and induces an average crosstalk of −4.77 dB.

References

  • Amiri I, Rashed ANZ, Yupapin P. High-Speed Light Sources in High-Speed Optical Passive Local Area Communication Networks. Journal of Optical Communications. 2023 Jan 27;44(1):61–7.
  • Yang Y, Li Y, Wang C. Generation and expansion of Laguerre–Gaussian beams. Journal of Optics. 2022 Dec 26;51(4):910–26.
  • Kenan CICEK. Characterisation of Orbital Angular Momentum Beam Emitter and Receiver. 2016;
  • Guo Z, Wang Z, Dedo MI, Guo K. The Orbital Angular Momentum Encoding System With Radial Indices of Laguerre–Gaussian Beam. IEEE Photonics J. 2018 Oct;10(5):1–11.
  • Agrawal G. Fiber-optic communication systems. 2012.
  • Liu X, Monfared YE, Pan R, Ma P, Cai Y, Liang C. Experimental realization of scalar and vector perfect Laguerre–Gaussian beams. Appl Phys Lett. 2021 Jul 12;119(2).
  • Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A (Coll Park). 1992 Jun 1;45(11):8185–9.
  • Guan B, Scott RP, Qin C, Fontaine NK, Su T, Ferrari C, et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt Express. 2014 Jan 13;22(1):145.
  • Su T, Scott RP, Djordjevic SS, Fontaine NK, Geisler DJ, Cai X, et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt Express. 2012 Apr 23;20(9):9396.
  • Fontaine NK, Doerr CR, Buhl LL. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In: Optical Fiber Communication Conference. Washington, D.C.: OSA; 2012. p. OTu1I.2.
  • Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12(22):5448.
  • Wang J, Yang J, Fazal I, Ahmed N, … YYN, 2012 undefined. Terabit free-space data transmission employing orbital angular momentum multiplexing. nature.comJ Wang, JY Yang, IM Fazal, N Ahmed, Y Yan, H Huang, Y Ren, Y Yue, S Dolinar, M TurNature photonics, 2012.
  • Bozinovic N. Orbital angular momentum in optical fibers. 2013.
  • Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics. 2011 Jun 1;13(6):064001.
  • Piccirillo B, D’Ambrosio V, Slussarenko S, Marrucci L, Santamato E. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl Phys Lett. 2010 Dec 13;97(24).
  • Marrucci L, Manzo C, Paparo D. Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media. Phys Rev Lett. 2006 Apr 28;96(16):163905.
  • Arfan M, Ghaffar A, Alkanhal MAS, Khan Y, Alqahtani AH, Ur Rehman S. Laguerre–Gaussian Beam Scattering by a Perfect Electromagnetic Conductor (PEMC) Sphere. Arab J Sci Eng. 2023 Jun 12;48(6):8001–9.
  • Ghaderi Goran Abad M, Mahmoudi M. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation. Sci Rep. 2021 Mar 16;11(1):5972.
  • Guo Z, Wang Z, Dedo MI, Guo K. The Orbital Angular Momentum Encoding System With Radial Indices of Laguerre–Gaussian Beam. IEEE Photonics J. 2018 Oct;10(5):1–11.
  • Aït-Ameur K. The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 Laser Beams. Photonics. 2024 Feb 27;11(3):217.
  • Rodenburg B, Lavery MPJ, Malik M, O’Sullivan MN, Mirhosseini M, Robertson DJ, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Opt Lett. 2012 Sep 1;37(17):3735.
  • Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express. 2012 Jun 4;20(12):13195.
  • Qu Z, Djordjevic IB. Orbital Angular Momentum Multiplexed Free-Space Optical Communication Systems Based on Coded Modulation. Applied Sciences. 2018 Nov 7;8(11):2179.
  • Zhao Z, Zhang R, Song H, Pang K, Almaiman A, Zhou H, et al. Modal coupling and crosstalk due to turbulence and divergence on free space THz links using multiple orbital angular momentum beams. Sci Rep. 2021 Jan 22;11(1):2110.
  • Ren Y, Wang Z, Xie G, Li L, Cao Y, Liu C, et al. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. Opt Lett. 2015 Sep 15;40(18):4210.
  • Willner AE, Pang K, Song H, Zou K, Zhou H. Orbital angular momentum of light for communications. Appl Phys Rev. 2021 Dec 1;8(4).
  • Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12(22):5448.
  • Song LM, Yang ZJ, Li XL, Zhang SM. Coherent superposition propagation of Laguerre–Gaussian and Hermite–Gaussian solitons. Appl Math Lett. 2020 Apr;102:106114.
  • O’Neil AT, Courtial J. Mode transformations in terms of the constituent Hermite–Gaussian or Laguerre–Gaussian modes and the variable-phase mode converter. Opt Commun. 2000 Jul;181(1–3):35–45.
  • Liu Y, Lin R, Wang F, Cai Y, Yu J. Propagation properties of Laguerre-Gaussian Schell-model beams with a twist phase. J Quant Spectrosc Radiat Transf. 2021 Apr;264:107556.
  • O’Neil AT, Courtial J. Mode transformations in terms of the constituent Hermite–Gaussian or Laguerre–Gaussian modes and the variable-phase mode converter. Opt Commun. 2000 Jul;181(1–3):35–45.
  • Li L, Xie G, Yan Y, Ren Y, Liao P, Zhao Z, et al. Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams. Journal of the Optical Society of America B. 2017 Jan 1;34(1):1.
  • Paterson C. Atmospheric Turbulence and Orbital Angular Momentum of Single Photons for Optical Communication. Phys Rev Lett. 2005 Apr 18;94(15):153901.
  • Prof. Warren Pickett. Matched Filter. 2018–2021 p.
  • Lou H, Ge X, Li Q. The New Purity and Capacity Models for the OAM-mmWave Communication Systems Under Atmospheric Turbulence. IEEE Access. 2019;7:129988–96.
There are 35 citations in total.

Details

Primary Language English
Subjects Data Communications
Journal Section TJST
Authors

İbrahim Yazıcı 0000-0002-0533-4961

Çağlar Duman 0000-0002-1845-8605

Publication Date September 30, 2025
Submission Date March 28, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 20 Issue: 2

Cite

APA Yazıcı, İ., & Duman, Ç. (2025). A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams. Turkish Journal of Science and Technology, 20(2), 455-464. https://doi.org/10.55525/tjst.1667248
AMA Yazıcı İ, Duman Ç. A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams. TJST. September 2025;20(2):455-464. doi:10.55525/tjst.1667248
Chicago Yazıcı, İbrahim, and Çağlar Duman. “A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams”. Turkish Journal of Science and Technology 20, no. 2 (September 2025): 455-64. https://doi.org/10.55525/tjst.1667248.
EndNote Yazıcı İ, Duman Ç (September 1, 2025) A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams. Turkish Journal of Science and Technology 20 2 455–464.
IEEE İ. Yazıcı and Ç. Duman, “A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams”, TJST, vol. 20, no. 2, pp. 455–464, 2025, doi: 10.55525/tjst.1667248.
ISNAD Yazıcı, İbrahim - Duman, Çağlar. “A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams”. Turkish Journal of Science and Technology 20/2 (September2025), 455-464. https://doi.org/10.55525/tjst.1667248.
JAMA Yazıcı İ, Duman Ç. A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams. TJST. 2025;20:455–464.
MLA Yazıcı, İbrahim and Çağlar Duman. “A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams”. Turkish Journal of Science and Technology, vol. 20, no. 2, 2025, pp. 455-64, doi:10.55525/tjst.1667248.
Vancouver Yazıcı İ, Duman Ç. A Novel Orbital Angular Momentum Coding System Using High Order Azimuthal Indices of Laguerre Gaussian Beams. TJST. 2025;20(2):455-64.