Research Article
BibTex RIS Cite

Co₃O₄ Bazlı Nanoakışkanların Termofiziksel Karakterizasyonu: Özgül Isı Kapasitesi ve Viskozite

Year 2025, Volume: 20 Issue: 2, 507 - 521, 30.09.2025
https://doi.org/10.55525/tjst.1750513

Abstract

Bu çalışma, etilen glikol (EG) ve deiyonize su (DW) ikili karışımları kullanılarak hazırlanan Co₃O₄ bazlı nanoakışkanların özgül ısı kapasitesi ve viskozite davranışlarını incelemektedir. Hacim oranları %60 EG : %40 DW ve %40 EG : %60 DW olan karışımlar kullanılmıştır. Nanoakışkanlar, Co₃O₄ nanoparçacıkları (<50 nm boyutunda ve %99,5 saflıkta) kullanılarak hazırlanmış ve koloidal stabilitenin sağlanması amacıyla sodyum dodesilbenzen sülfonat (SDBS) yüzey aktif maddesi ile stabilize edilmiştir. Nanoparçacık hacim konsantrasyonu (%0,25–1) ve sıcaklığın (20 °C–70 °C) termofiziksel özellikler üzerindeki etkisi değerlendirilmiştir. Özgül ısı kapasitesi, nanoparçacık konsantrasyonu arttıkça azalmış, sıcaklıkla birlikte ise artış göstermiştir. Özgül ısıda en yüksek azalma, %1 yükleme ile 20 °C’de %60 EG : %40 DW karışımı için %9,5’e kadar gözlenmiştir. Diğer yandan, viskozite artan nanoparçacık konsantrasyonlarıyla birlikte artmış, sıcaklık artışıyla azalmıştır; bu durum nanoakışkanların tipik davranışıyla uyumludur. Bağıl viskozite değerleri, baz akışkan bileşimi, sıcaklık ve nanoparçacık konsantrasyonuna bağlı olarak 1,12 ile 1,62 arasında değişmiştir. Deneysel sonuçlar, özgül ısı ve viskozite için teorik bağıntılarla da karşılaştırılmıştır. Elde edilen bulgular, Co₃O₄ nanoakışkanlarının ısı-akışkan performansına dair önemli bilgiler sunmakta ve pratik ısı transferi uygulamaları için formülasyon ve ısıl optimizasyonunun önemini vurgulamaktadır.

References

  • Bacha HB, Ullah N, Hamid A, Shah NA. A comprehensive review on nanofluids: Synthesis, cutting-edge applications, and future prospects. Int J Thermofluids 2024;22:100595.
  • Razzaq I, Xinhua W, Rasool G, Sun T, Shflot AS, Malik MY, et al. Nanofluids for advanced applications: A comprehensive review on preparation methods, properties, and environmental impact. ACS Omega 2025;10:5251-5282.
  • Said Z, Bellos E, Muhammad Ali H, Rahman S, Tzivanidis C. Nanofluids, turbulators, and novel working fluids for heat transfer processes and energy applications: Current status and prospective. Appl Therm Eng 2025;258:124478.
  • Peer MS, Cascetta M, Migliari L, Petrollese M. Nanofluids in thermal energy storage systems: A comprehensive review. Energies 2025;18:707.
  • Yılmaz Aydın D, Gürü M. Nanofluids: Preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis. J Therm Anal Calorim 2022;147:7631-7664.
  • Porgar S, Huminic G, Huminic A, Najibolashrafi R, Salehfekr S. Application of nanofluids in heat exchangers – A state-of-the-art review. Int J Thermofluids 2024;24:100945.
  • Elhenawy Y, Fouad K, Refaat A, Al-Qabandi OA, Toderaș M, Bassyouni M. Experimental enhancement of thermal and electrical efficiency in concentrator photovoltaic modules using nanofluid cooling. Energy Sci Eng 2025;13:1492-1508.
  • Manimaran M, Norizan MN, Kassim MHM, Adam MR, Abdullah N, Norrrahim MNF. Critical review on the stability and thermal conductivity of water-based hybrid nanofluids for heat transfer applications. RSC Adv 2025;15:14088-14125.
  • Allen Zennifer M, Manikandan S, Suganthi KS, Leela Vinodhan V, Rajan KS. Development of CuO–ethylene glycol nanofluids for efficient energy management: Assessment of potential for energy recovery. Energy Convers Manag 2015;105:685-96.
  • Ramadhan AI, Saptaji K, Hendrawati TY, Sari AM, Umar E, Aziz A, et al. Heat transfer performance analysis of green nanofluids as coolant in automotive radiator for motorcycle engine. J Adv Res Fluid Mech Therm Sci 2025;126:214-225.
  • Prasanna Shankara R, Banapurmath NR, D’Souza A, Sajjan AM, Ayachit NH, Yunus Khan TM, et al. An insight into the performance of radiator system using ethylene glycol-water based graphene oxide nanofluids. Alex Eng J 2022;61:5155-5167.
  • Soltanim ehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol-water nanofluid for application in heating and cooling systems. Appl Therm Eng 2016;105:716-723.
  • Lim SK, Azmi WH, Yusoff AR. Investigation of thermal conductivity and viscosity of Al₂O₃/water–ethylene glycol mixture nanocoolant for cooling channel of hot-press forming die application. Int Commun Heat Mass Transf 2016;78:182-189.
  • Kumar S, Kaur A, Gaur J, Singh P, Kaur H, Kaushal S, et al. State-of-the-art in Co₃O₄ nanoparticle synthesis and applications: Toward a sustainable future. ChemistrySelect 2025;10:e202405147.
  • El-Shamy OAA, Deyab MA. The most popular and effective synthesis processes for Co₃O₄ nanoparticles and their benefit in preventing corrosion. Z Für Phys Chem 2023;237:333-350.
  • Rahman MA, Hasnain SMM, Pandey S, Tapalova A, Akylbekov N, Zairov R. Review on nanofluids: Preparation, properties, stability, and thermal performance augmentation in heat transfer applications. ACS Omega 2024;9:32328-32349.
  • Mukherjee S, Mishra PC, Chaudhuri P. Stability of heat transfer nanofluids – A review. ChemBioEng Rev 2018;5:312–333.
  • Ilyas SU, Pendyala R, Marneni N. Stability of nanofluids. In: Korada VS, Hisham B Hamid N, editors. Eng Appl Nanotechnol. Cham: Springer International Publishing, 2017; 1-31.
  • Le Ba T, Mahian O, Wongwises S, Szilágyi IM. Review on the recent progress in the preparation and stability of graphene-based nanofluids. J Therm Anal Calorim 2020;142:1145-1172.
  • Yılmaz Aydın D, Çiftçi E, Gürü M, Sözen A. The impacts of nanoparticle concentration and surfactant type on thermal performance of a thermosyphon heat pipe working with bauxite nanofluid. Energy Sources Part Recovery Util Environ Eff 2021;43:1524-1548.
  • Yilmaz Aydin D, Gürü M, Sözen A, Çiftçi E. Investigation of the effects of base fluid type of the nanofluid on heat pipe performance. Proc Inst Mech Eng Part J Power Energy 2021;235:124-138.
  • Aydin DY, Gürü M, Sözen A, Çiftçi E. Thermal performance improvement of the heat pipe by employing dolomite/ethylene glycol nanofluid. Int J Renew Energy Dev 2020;9:23-27.
  • Aydın DY, Gürü M, Sözen A. Experimental investigation on thermal performance of thermosyphon heat pipe using dolomite/deionized water nanofluid depending on nanoparticle concentration and surfactant type. Heat Transf Res 2020;51:1073-1085.
  • Yılmaz Aydın D, Gürü M, Sözen A. Enhancement of heat transfer performance of a heat pipe by using calcium magnesium carbonate–ethylene glycol/water nanofluid with sodium dodecylbenzene sulfonate. Period Polytech Chem Eng 2022;66:609-616.
  • Aydin DY, Gürü M, Sözen A. Preparation of bauxite/deionized water nanofluid and experimental investigation of its thermophysical properties. Politek Derg 2021;24:355-359.
  • Kalsi S, Kumar S, Kumar A, Alam T, Dobrotă D. Thermophysical properties of nanofluids and their potential applications in heat transfer enhancement: A review. Arab J Chem 2023;16:105272.
  • Hentschke R. On the specific heat capacity enhancement in nanofluids. Nanoscale Res Lett 2016;11:88.
  • Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM. A comparative review on the specific heat of nanofluids for energy perspective. Renew Sustain Energy Rev 2014;38:88-98.
  • Hemmati-Sarapardeh A, Varamesh A, Husein MM, Karan K. On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renew Sustain Energy Rev 2018;81:313-329.
  • Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev 2017;76:1134-1152.
  • Routbort JL, Singh D, Timofeeva EV, Yu W, France DM. Pumping power of nanofluids in a flowing system. J Nanoparticle Res 2011;13:931-937.
  • Hirudayanathan HP, Debnath S, Anwar M, Johar MB, Elumalai NK, Mohammed Iqbal U. A review on influence of nanoparticle parameters on viscosity of nanofluids and machining performance in minimum quantity lubrication. Proc Inst Mech Eng Part E J Process Mech Eng 2025;239:1005-1024.
  • Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 1998;11:151-170.
  • Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 2000;43:3701–3707.
  • Vajjha RS, Das DK. Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf 2009;131:071601.
  • Zhou L-P, Wang B-X, Peng X-F, Du X-Z, Yang Y-P. On the specific heat capacity of CuO nanofluid. Adv Mech Eng 2010;2:172085.
  • Sekhar YR, Sharma KV. Study of viscosity and specific heat capacity characteristics of water-based Al₂O₃ nanofluids at low particle concentrations. J Exp Nanosci 2015;10:86-102.
  • Handbook A. ASHRAE handbook-fundamental: SI editions. Am Soc Heat Refrig Air-Cond Eng Inc Atlanta GA USA 2009.
  • Hassan AH, Hassan MAM, Shedid MH. Isobaric specific heat capacity for Al₂O₃/water ethylene glycol mixture nanofluid. J Therm Sci Eng Appl 2022;14:021001.
  • Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys 1906;324:289-306.
  • Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys 1952;20:571.
  • Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 1977;83:97-117.
  • Syam Sundar L, Venkata Ramana E, Singh MK, De Sousa ACM. Viscosity of low volume concentrations of magnetic Fe₃O₄ nanoparticles dispersed in ethylene glycol and water mixture. Chem Phys Lett 2012;554:236-242.
  • Maı̈ga SEB, Nguyen CT, Galanis N, Roy G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct 2004;35:543-557.
  • Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci 2007;32:397-402.

Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity

Year 2025, Volume: 20 Issue: 2, 507 - 521, 30.09.2025
https://doi.org/10.55525/tjst.1750513

Abstract

This study investigates the specific heat capacity and viscosity behavior of Co₃O₄-based nanofluids prepared with binary mixtures of ethylene glycol (EG) and deionized water (DW) at volume ratios of 60:40 and 40:60. Nanofluids were prepared using Co₃O₄ nanoparticles (<50 nm, 99.5% purity) and stabilized with sodium dodecylbenzene sulfonate (SDBS) surfactant to ensure colloidal stability. The effects of nanoparticle volume concentration (0.25–1%) and temperature (20 °C to 70 °C) on thermophysical properties were evaluated. Specific heat capacity decreased with increasing nanoparticle concentration and increased with temperature. The highest reduction in specific heat capacity was observed at 1% loading, reaching up to 9.5% for the 60EG:40DW nanofluid at 20 °C. Conversely, viscosity increased with higher nanoparticle concentrations and decreased with temperature, consistent with typical nanofluid behavior. Relative viscosity values ranged from 1.12 to 1.62, depending on base fluid composition, temperature, and nanoparticle concentration. Experimental results were also compared with theoretical correlations for specific heat and viscosity. The findings provide essential insights into the thermal-fluid performance of Co₃O₄ nanofluids and emphasize the importance of formulation and thermal optimization for practical heat transfer applications.

References

  • Bacha HB, Ullah N, Hamid A, Shah NA. A comprehensive review on nanofluids: Synthesis, cutting-edge applications, and future prospects. Int J Thermofluids 2024;22:100595.
  • Razzaq I, Xinhua W, Rasool G, Sun T, Shflot AS, Malik MY, et al. Nanofluids for advanced applications: A comprehensive review on preparation methods, properties, and environmental impact. ACS Omega 2025;10:5251-5282.
  • Said Z, Bellos E, Muhammad Ali H, Rahman S, Tzivanidis C. Nanofluids, turbulators, and novel working fluids for heat transfer processes and energy applications: Current status and prospective. Appl Therm Eng 2025;258:124478.
  • Peer MS, Cascetta M, Migliari L, Petrollese M. Nanofluids in thermal energy storage systems: A comprehensive review. Energies 2025;18:707.
  • Yılmaz Aydın D, Gürü M. Nanofluids: Preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis. J Therm Anal Calorim 2022;147:7631-7664.
  • Porgar S, Huminic G, Huminic A, Najibolashrafi R, Salehfekr S. Application of nanofluids in heat exchangers – A state-of-the-art review. Int J Thermofluids 2024;24:100945.
  • Elhenawy Y, Fouad K, Refaat A, Al-Qabandi OA, Toderaș M, Bassyouni M. Experimental enhancement of thermal and electrical efficiency in concentrator photovoltaic modules using nanofluid cooling. Energy Sci Eng 2025;13:1492-1508.
  • Manimaran M, Norizan MN, Kassim MHM, Adam MR, Abdullah N, Norrrahim MNF. Critical review on the stability and thermal conductivity of water-based hybrid nanofluids for heat transfer applications. RSC Adv 2025;15:14088-14125.
  • Allen Zennifer M, Manikandan S, Suganthi KS, Leela Vinodhan V, Rajan KS. Development of CuO–ethylene glycol nanofluids for efficient energy management: Assessment of potential for energy recovery. Energy Convers Manag 2015;105:685-96.
  • Ramadhan AI, Saptaji K, Hendrawati TY, Sari AM, Umar E, Aziz A, et al. Heat transfer performance analysis of green nanofluids as coolant in automotive radiator for motorcycle engine. J Adv Res Fluid Mech Therm Sci 2025;126:214-225.
  • Prasanna Shankara R, Banapurmath NR, D’Souza A, Sajjan AM, Ayachit NH, Yunus Khan TM, et al. An insight into the performance of radiator system using ethylene glycol-water based graphene oxide nanofluids. Alex Eng J 2022;61:5155-5167.
  • Soltanim ehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol-water nanofluid for application in heating and cooling systems. Appl Therm Eng 2016;105:716-723.
  • Lim SK, Azmi WH, Yusoff AR. Investigation of thermal conductivity and viscosity of Al₂O₃/water–ethylene glycol mixture nanocoolant for cooling channel of hot-press forming die application. Int Commun Heat Mass Transf 2016;78:182-189.
  • Kumar S, Kaur A, Gaur J, Singh P, Kaur H, Kaushal S, et al. State-of-the-art in Co₃O₄ nanoparticle synthesis and applications: Toward a sustainable future. ChemistrySelect 2025;10:e202405147.
  • El-Shamy OAA, Deyab MA. The most popular and effective synthesis processes for Co₃O₄ nanoparticles and their benefit in preventing corrosion. Z Für Phys Chem 2023;237:333-350.
  • Rahman MA, Hasnain SMM, Pandey S, Tapalova A, Akylbekov N, Zairov R. Review on nanofluids: Preparation, properties, stability, and thermal performance augmentation in heat transfer applications. ACS Omega 2024;9:32328-32349.
  • Mukherjee S, Mishra PC, Chaudhuri P. Stability of heat transfer nanofluids – A review. ChemBioEng Rev 2018;5:312–333.
  • Ilyas SU, Pendyala R, Marneni N. Stability of nanofluids. In: Korada VS, Hisham B Hamid N, editors. Eng Appl Nanotechnol. Cham: Springer International Publishing, 2017; 1-31.
  • Le Ba T, Mahian O, Wongwises S, Szilágyi IM. Review on the recent progress in the preparation and stability of graphene-based nanofluids. J Therm Anal Calorim 2020;142:1145-1172.
  • Yılmaz Aydın D, Çiftçi E, Gürü M, Sözen A. The impacts of nanoparticle concentration and surfactant type on thermal performance of a thermosyphon heat pipe working with bauxite nanofluid. Energy Sources Part Recovery Util Environ Eff 2021;43:1524-1548.
  • Yilmaz Aydin D, Gürü M, Sözen A, Çiftçi E. Investigation of the effects of base fluid type of the nanofluid on heat pipe performance. Proc Inst Mech Eng Part J Power Energy 2021;235:124-138.
  • Aydin DY, Gürü M, Sözen A, Çiftçi E. Thermal performance improvement of the heat pipe by employing dolomite/ethylene glycol nanofluid. Int J Renew Energy Dev 2020;9:23-27.
  • Aydın DY, Gürü M, Sözen A. Experimental investigation on thermal performance of thermosyphon heat pipe using dolomite/deionized water nanofluid depending on nanoparticle concentration and surfactant type. Heat Transf Res 2020;51:1073-1085.
  • Yılmaz Aydın D, Gürü M, Sözen A. Enhancement of heat transfer performance of a heat pipe by using calcium magnesium carbonate–ethylene glycol/water nanofluid with sodium dodecylbenzene sulfonate. Period Polytech Chem Eng 2022;66:609-616.
  • Aydin DY, Gürü M, Sözen A. Preparation of bauxite/deionized water nanofluid and experimental investigation of its thermophysical properties. Politek Derg 2021;24:355-359.
  • Kalsi S, Kumar S, Kumar A, Alam T, Dobrotă D. Thermophysical properties of nanofluids and their potential applications in heat transfer enhancement: A review. Arab J Chem 2023;16:105272.
  • Hentschke R. On the specific heat capacity enhancement in nanofluids. Nanoscale Res Lett 2016;11:88.
  • Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM. A comparative review on the specific heat of nanofluids for energy perspective. Renew Sustain Energy Rev 2014;38:88-98.
  • Hemmati-Sarapardeh A, Varamesh A, Husein MM, Karan K. On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renew Sustain Energy Rev 2018;81:313-329.
  • Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev 2017;76:1134-1152.
  • Routbort JL, Singh D, Timofeeva EV, Yu W, France DM. Pumping power of nanofluids in a flowing system. J Nanoparticle Res 2011;13:931-937.
  • Hirudayanathan HP, Debnath S, Anwar M, Johar MB, Elumalai NK, Mohammed Iqbal U. A review on influence of nanoparticle parameters on viscosity of nanofluids and machining performance in minimum quantity lubrication. Proc Inst Mech Eng Part E J Process Mech Eng 2025;239:1005-1024.
  • Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 1998;11:151-170.
  • Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 2000;43:3701–3707.
  • Vajjha RS, Das DK. Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf 2009;131:071601.
  • Zhou L-P, Wang B-X, Peng X-F, Du X-Z, Yang Y-P. On the specific heat capacity of CuO nanofluid. Adv Mech Eng 2010;2:172085.
  • Sekhar YR, Sharma KV. Study of viscosity and specific heat capacity characteristics of water-based Al₂O₃ nanofluids at low particle concentrations. J Exp Nanosci 2015;10:86-102.
  • Handbook A. ASHRAE handbook-fundamental: SI editions. Am Soc Heat Refrig Air-Cond Eng Inc Atlanta GA USA 2009.
  • Hassan AH, Hassan MAM, Shedid MH. Isobaric specific heat capacity for Al₂O₃/water ethylene glycol mixture nanofluid. J Therm Sci Eng Appl 2022;14:021001.
  • Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys 1906;324:289-306.
  • Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys 1952;20:571.
  • Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 1977;83:97-117.
  • Syam Sundar L, Venkata Ramana E, Singh MK, De Sousa ACM. Viscosity of low volume concentrations of magnetic Fe₃O₄ nanoparticles dispersed in ethylene glycol and water mixture. Chem Phys Lett 2012;554:236-242.
  • Maı̈ga SEB, Nguyen CT, Galanis N, Roy G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct 2004;35:543-557.
  • Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci 2007;32:397-402.
There are 45 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other), Nanomaterials
Journal Section TJST
Authors

Duygu Yılmaz Aydın 0000-0003-0557-5279

Publication Date September 30, 2025
Submission Date July 25, 2025
Acceptance Date September 2, 2025
Published in Issue Year 2025 Volume: 20 Issue: 2

Cite

APA Yılmaz Aydın, D. (2025). Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity. Turkish Journal of Science and Technology, 20(2), 507-521. https://doi.org/10.55525/tjst.1750513
AMA Yılmaz Aydın D. Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity. TJST. September 2025;20(2):507-521. doi:10.55525/tjst.1750513
Chicago Yılmaz Aydın, Duygu. “Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity”. Turkish Journal of Science and Technology 20, no. 2 (September 2025): 507-21. https://doi.org/10.55525/tjst.1750513.
EndNote Yılmaz Aydın D (September 1, 2025) Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity. Turkish Journal of Science and Technology 20 2 507–521.
IEEE D. Yılmaz Aydın, “Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity”, TJST, vol. 20, no. 2, pp. 507–521, 2025, doi: 10.55525/tjst.1750513.
ISNAD Yılmaz Aydın, Duygu. “Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity”. Turkish Journal of Science and Technology 20/2 (September2025), 507-521. https://doi.org/10.55525/tjst.1750513.
JAMA Yılmaz Aydın D. Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity. TJST. 2025;20:507–521.
MLA Yılmaz Aydın, Duygu. “Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity”. Turkish Journal of Science and Technology, vol. 20, no. 2, 2025, pp. 507-21, doi:10.55525/tjst.1750513.
Vancouver Yılmaz Aydın D. Thermophysical Characterization of Co₃O₄-Based Nanofluids: Specific Heat Capacity and Viscosity. TJST. 2025;20(2):507-21.