BibTex RIS Kaynak Göster

Compressive behaviour of glass fiber reinforced aluminium foam

Yıl 2014, Cilt: 4 Sayı: 1, 21 - 26, 23.07.2016

Öz

The goal of this study was the analysis of the flatwise and edgewise compression response of closed-cell aluminium foam reinforced by the outer skins made of glass fiber reinforced epoxy matrix and the results were compared with those obtained for aluminium foams without glass fiber skins. Aluminium foams were produced by powder metallurgy method. Glass fiber skins were produced in various orientation angles in order to investigate their effects to the efficiency and capacity of absorbing energy of the sandwich. Glass fiber skins were bonded onto the aluminium foam core by epoxy resin in order to fabricate sandwich panels. As a result, the sandwich panels produced has particular importance for transport industries, such as automotive, aerospace, ship structures

Kaynakça

  • Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W. & Wadley H.N. (2000). Metal Foams: A Design Guide, Burlington: Butterworth Heinemann, Boston , pp. 151–169.
  • Banhart J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci, 46(6), pp. 559–632.
  • Banhart J., Schmoll C. & Neumann U. (1998). Light-weight aluminium foam structures for ships. in“Proc. Conf. Materials in Oceanic Environment (Euromat ’98)”, Lisbon, Portugal, 22–24 July 1998, Editor: Faria, L., Vol. 1, pp. 55 – 63.
  • Cantwell, W.J. & Villanueva, G.R. (2004). The high velocity impact response of composite and FML-reinforced sandwich structures. Compos .Sci.Technol., 64, pp. 35-54.
  • Degischer H.P. & Kriszt B. (2002). Handbook of cellular metals: production, processing, applications. Weinheim: Wiley-VCH Verlag.
  • Gibson L.J., Ashby M.F. (1997). Cellular solids, 2nd ed. Cambridge: Cambridge University Press.
  • Hayman B, Berggreen C, Jenstrup C. & Karlsen K. (2008). Advanced mechanicaltesting of sandwichstructures. In: Eighthinternationalconference on sandwichstructures (ICSS 8), Porto, pp. 417–427.
  • ISO 844:2007. (2007). Determination of compression properties. 5th ed. International Organization for Standardization.
  • Koza E., Leonowicz M., Wojciechowski S.& Simancik F. (2003). Compressive strength of aluminium foams. Materials Letters, 58, pp. 132-135.
  • Stenius I, Rosén A. & Kuttenkeuler J. (2001). On structural design of energy efficient small high-speed craft. Marine Structures, 24, pp.43–59.
  • Yi F., Zhu Z., Zu F., Hu S. &Yi P. (2001). Strain rate effects on the compressive property and the energy absorbing capacity of aluminum alloy foams. Materials Characterization, 47, pp. 417–422
Yıl 2014, Cilt: 4 Sayı: 1, 21 - 26, 23.07.2016

Öz

Kaynakça

  • Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W. & Wadley H.N. (2000). Metal Foams: A Design Guide, Burlington: Butterworth Heinemann, Boston , pp. 151–169.
  • Banhart J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci, 46(6), pp. 559–632.
  • Banhart J., Schmoll C. & Neumann U. (1998). Light-weight aluminium foam structures for ships. in“Proc. Conf. Materials in Oceanic Environment (Euromat ’98)”, Lisbon, Portugal, 22–24 July 1998, Editor: Faria, L., Vol. 1, pp. 55 – 63.
  • Cantwell, W.J. & Villanueva, G.R. (2004). The high velocity impact response of composite and FML-reinforced sandwich structures. Compos .Sci.Technol., 64, pp. 35-54.
  • Degischer H.P. & Kriszt B. (2002). Handbook of cellular metals: production, processing, applications. Weinheim: Wiley-VCH Verlag.
  • Gibson L.J., Ashby M.F. (1997). Cellular solids, 2nd ed. Cambridge: Cambridge University Press.
  • Hayman B, Berggreen C, Jenstrup C. & Karlsen K. (2008). Advanced mechanicaltesting of sandwichstructures. In: Eighthinternationalconference on sandwichstructures (ICSS 8), Porto, pp. 417–427.
  • ISO 844:2007. (2007). Determination of compression properties. 5th ed. International Organization for Standardization.
  • Koza E., Leonowicz M., Wojciechowski S.& Simancik F. (2003). Compressive strength of aluminium foams. Materials Letters, 58, pp. 132-135.
  • Stenius I, Rosén A. & Kuttenkeuler J. (2001). On structural design of energy efficient small high-speed craft. Marine Structures, 24, pp.43–59.
  • Yi F., Zhu Z., Zu F., Hu S. &Yi P. (2001). Strain rate effects on the compressive property and the energy absorbing capacity of aluminum alloy foams. Materials Characterization, 47, pp. 417–422
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA56HB62RS
Bölüm Makaleler
Yazarlar

Ali Kurşun Bu kişi benim

Emre Kara Bu kişi benim

Recep Uygun Bu kişi benim

Halil Aykul Bu kişi benim

Yayımlanma Tarihi 23 Temmuz 2016
Yayımlandığı Sayı Yıl 2014 Cilt: 4 Sayı: 1

Kaynak Göster

APA Kurşun, A., Kara, E., Uygun, R., Aykul, H. (2016). Compressive behaviour of glass fiber reinforced aluminium foam. TOJSAT, 4(1), 21-26.
AMA Kurşun A, Kara E, Uygun R, Aykul H. Compressive behaviour of glass fiber reinforced aluminium foam. TOJSAT. Temmuz 2016;4(1):21-26.
Chicago Kurşun, Ali, Emre Kara, Recep Uygun, ve Halil Aykul. “Compressive Behaviour of Glass Fiber Reinforced Aluminium Foam”. TOJSAT 4, sy. 1 (Temmuz 2016): 21-26.
EndNote Kurşun A, Kara E, Uygun R, Aykul H (01 Temmuz 2016) Compressive behaviour of glass fiber reinforced aluminium foam. TOJSAT 4 1 21–26.
IEEE A. Kurşun, E. Kara, R. Uygun, ve H. Aykul, “Compressive behaviour of glass fiber reinforced aluminium foam”, TOJSAT, c. 4, sy. 1, ss. 21–26, 2016.
ISNAD Kurşun, Ali vd. “Compressive Behaviour of Glass Fiber Reinforced Aluminium Foam”. TOJSAT 4/1 (Temmuz 2016), 21-26.
JAMA Kurşun A, Kara E, Uygun R, Aykul H. Compressive behaviour of glass fiber reinforced aluminium foam. TOJSAT. 2016;4:21–26.
MLA Kurşun, Ali vd. “Compressive Behaviour of Glass Fiber Reinforced Aluminium Foam”. TOJSAT, c. 4, sy. 1, 2016, ss. 21-26.
Vancouver Kurşun A, Kara E, Uygun R, Aykul H. Compressive behaviour of glass fiber reinforced aluminium foam. TOJSAT. 2016;4(1):21-6.