Review
BibTex RIS Cite

Açık Deniz Rüzgar Türbinlerine Kimyasal Bakış: Kaplama Sistemleri, Çevresel Etkiler Ve Sürdürülebilir Kalkınma

Year 2024, , 131 - 144, 01.09.2024
https://doi.org/10.52998/trjmms.1415808

Abstract

Açık deniz rüzgar türbinlerinin (RT'ler) konuşlandırılması dünya çapında ivme kazanırken, temiz enerji üretimi için önemli bir potansiyel sunmaktadır. Bununla birlikte, açık denizdeki rüzgar türbini yapılarının bakımı ve uzun ömürlülüğü, özellikle korozyona karşı koruma kaplamaları ve bunların çevresel etkileriyle ilgili olarak karmaşık zorluklar ortaya çıkarmaktadır. Bu çalışma, zorlu deniz koşullarına dayanacak dayanıklı çözümlere olan ihtiyacı vurgulayarak, açık deniz RT'leri için kaplama sistemlerinin temel tasarım kriterlerini, koruyucu mekanizmalarını ve uygulama yöntemlerini hakkında gerçekleştirilen bir derlemedir. Ayrıca çalışma, açık deniz rüzgar santrallerinden kaynaklanan, korozyon ürünleri ve plastikler de dahil olmak üzere kimyasal emisyonları ve bunların potansiyel ekolojik etkilerini incelemektedir. Derin sularda yüzen açık deniz rüzgar santrallerinin çevresel etkilerine ilişkin kapsamlı bilimsel çalışmalar bulunmamakla birlikte, bu makale bu konulara ve bunların deniz ekosistemleri ve insan sağlığına olan etkilerine ışık tutmayı amaçlamaktadır. Çalışma, benzer durumlara ilişkin mevcut literatürü sentezleyerek, açık deniz rüzgar enerjisinin çevresel ayak izleri hakkında fikir oluşturarak ve gelecekteki açık deniz rüzgar projelerini ilerletmede yerinde ve doğru karar vermenin öneminin altını çizmektedir.

References

  • Adedipe, O., Brennan, F., Kolios, A. (2016). Review of corrosion fatigue in offshore structures: present status and challenges in the offshore wind sector. Renewable and Sustainable Energy Reviews 6:141–154. doi:10.1016/j.rser.2016.02.017.
  • Albers, H. (2009). Recycling of wind turbine rotor blades - fact or fiction? DEWI Mag. 34:32–41.
  • Anderson, T.L, Frigaard, P, Rasmussen, M.R, Martinelli, L. (2011). Loads on Wind Turbine Access Platforms with Gratings, In: Smith, JM, Lynett, P (eds.) Proc. 32nd International Conference on Coastal Engineering. Coastal Engineering Research Council.
  • Ashton, K., Holmes, L., Turner, A. (2010). Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 60 (11): 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014.
  • Auta, H.S., Emenike, C.U., Fauziah, S.H. (2017). Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ. Int. 102: 16. https://doi.org/10.1016/j.envint.2017.02.013.
  • Barnes, D.K., Galgani, F., Thompson, R.C., Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. 364 (1526): 1985. doi:10.1098/rstb.2008.0205.
  • Bejgarn, S., Macleod, M., Bogdal, C., Breitholtz, M. (2015). Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra Spinipes. Chemosphere 132: 114–119. https://doi.org/10.1016/j.chemosphere.2015.03.010.
  • Boehlert, G.W., Gill, A.B. (2015). Environmental and ecological effects of ocean renewable energy development: a current synthesis. Oceanography 23 (2): 68–81. https://doi.org/10.5670/oceanog.2010.46.
  • Brennecke, D., Ferreira, E.C., Costa, T.M.M., Appel, D., Gama, B.A.P.D., Lenz, M. (2015). Ingested microplastics (> 100 μm) are translocated to organs of the tropical fiddler crab Uca rapax. Marine Pollution Bulletin 96(1–2): 491–495. doi:10.1016/j.marpolbul.2015.05.001.
  • Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ. Sci. Technol. 45(21): 9175–9179. https://doi.org/10.1021/es201811s.
  • Browne, M.A., Galloway, T.S., Thompson, R.C. (2010). Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 44(9): 3404. https://doi.org/10.1021/es903784e.
  • Burea of Ocean Energy Management (BOEM), Central California Call Area (2021). Accessed Date: 12.11.2023, https://l24.im/aHI is retrieved.
  • Çokyaşar E., Beji S. (2013). Açık Deniz Rüzgâr Çiftliklerinin Malî Açıdan İncelenmesi, Gemi ve Deniz Teknolojisi Dergisi 216: 1300-1973.
  • Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S. (2013). Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47(12): 6646. doi:10.1021/es400663f.
  • Collignon, A., Hecq, J.H., Glagani, F., Voisin, P., Collard, F., Goffart, A. (2012). Neustonic microplastic and zooplankton in the north western Mediterranean Sea. Marine Pollution Bulletin 64 (4):861. doi:10.1016/j.marpolbul.2012.01.011.
  • Copping, A., Sather, N., Hanna, L., Whiting, J., Zydlewsk, G., Staines, G., Gill, A., Hutchison, I., O’Hagan, A.M., Simas, T., Bald, J., Sparling, C., Wood, J., Masden, E. (2016). Annex IV 2016 state of the science report: environmental effects of marine renewable energy development around the world. OES-Environmental 1–224.
  • Deveci, M., Ozcan, E., John, R., Covrig, C.F., Pamucar, D. (2020). A study on offshore wind farm siting criteria using a novel interval-valued fuzzy-rough based Delphi method. J. Environ. Manage. 270: 110916 https://doi.org/10.1016/j. jenvman.2020.110916.
  • European Agency for Safety and Health at Work (EU-OSHA), Occupational safety and health in the wind sector (2013). Accessed Date: 10.11.2023, https://l24.im/Eac is retrieved.
  • Fendall, L.S., Sewell, M.A. (2009). Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine Pollution Bulletin 58(8): 1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025.
  • Fossi, M.C., Panti, C., Guerranti, C., Coppola, D., Giannetti, M., Marsili, L., Minutoli, R. (2012). Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera Physalus). Mar. Pollut. Bull. 64(11): 2374–2379. https://doi.org/10.1016/j.marpolbul.2012.08.013.
  • Global Offshore Wind Report (GWR) (2021). Accessed Date: 11.11.2023, https://l24.im/mlHgQ is retrieved.
  • Global Wind Energy Council (GWEC), Global Wind Report 2022 (2022). Accessed Date: 12.10.2023, https://gwec.net/global-wind-report-2022/ is retrieved.
  • Global Wind Energy Council (GWEC), Global Wind Statistics 2017 (2018). Accessed Date: 18.11.2023, https://l24.im/kI9c1du is retrieved.
  • GMKA, TR22 Bölgesi Deniz Üstü Rüzgar Santrali ve Limanı Ön Fizibilite Raporu (2023). Accessed Date: 11.12.2023., https://www.gmka.gov.tr/dokumanlar/yayinlar/TR22-Bolgesi-Deniz-Ustu-Ruzgar-Santrali-Limani-On-Fizibilite-Raporu.pdf is retrieved.
  • Goldstein, M.C., Rosenberg, M., Cheng, L. (2012). Increased Oceanic Microplastic Debris Enhances Oviposition in an Endemic Pelagic Insect. Biol Lett 8(5): 817–820. doi:10.1098/rsbl.2012.0298.
  • Guezuraga B., Zauner, R., Pol, W. (2012). Life cycle assessment of two different 2 MW class wind turbines. Renew Energy 37(1):37–44. https://doi.org/10.1016/j.renene.2011.05.008.
  • Graabak, I., Korpås, M. (2016). Variability characteristics of European wind and solar power resources-a review. Energies 9 (6): 449. doi.org/10.3390/en9060449.
  • Hilbert, L.R, Black, A.R, Andersen, F., Mathiesen, T. (2011). Inspection and Monitoring of Corrosion Inside Monopile Foundations for Offshore Wind Turbines, Eurocorr 2011: European Corrosion Congress, Paper No. 4730, Stockholm, Sweden, 4–8.
  • IEA, World Energy Outlook 2023 (2023). Accessed Date: 16.12.2023 IEA, Paris https://www.iea.org/reports/world-energy-outlook-2023, Licence: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A) is retrieved.
  • Imhof, H.K., Ivleva, N.P., Schmid, J., Niessner, R., Laforsch, Christian, L. (2013). Contamination of beach sediments of a subalpine lake with microplastic particles. Curr. Biol. 23(19): R867. https://doi.org/10.1016/j.cub.2013.09.001.
  • International Renewable Energy Agency (IRENA), Renewable energy and jobs-Annual Review 2016 (2016). Accessed Date: 11.11.2023, https://l24.im/D1nl is retrieved.
  • ISO 12944-5-(2007). Paints and Varnishes—Corrosion Protection of Steel Structures by Protective Paint Systems—Part 5: Protective Paint Systems. International Standard Organization.
  • ISO 20340-(2009). Paints and Varnishes—Performance Requirements for Protective Paint Systems for Offshore and Related Structures. International Standard Organization.
  • Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. (2015). Marine pollution. Plastic waste inputs from land into the ocean. Science 347(6223): 768. doi:10.1126/science.126035.
  • James, R., Costa Ros, M. (2015). Floating Offshore Wind: Market and Technology Review. The Carbon Trust, United Kingdom 168.
  • Kaposi, K.L., Mos, B., Kelaher, B.P., Dworjanyn, S.A. (2016). Ingestion of microplastic has limited impact on a marine larva. Environ. Sci. Technol. 48(3): 1638–1645. https://doi.org/10.1021/es404295e.
  • Karteek B., Ramyakrishna P., Ravi A., Rajender B., Sashivinay K.G. (2021). The role of anticorrosive polymer coatings for the protection of metallic surface. Corros Rev 2021.
  • Kirchgeorg, T., Weinberg, I., Hörnig, M., Baier, R., Schmid, M.J., Brockmeyer, B. (2018). Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment. Marine Pollution Bulletin 136:257–26. https://doi.org/10.1016/j.marpolbul.2018.08.058.
  • Kulkarni, S.S., Edwards, D.J. (2022). A bibliometric review on the implications of renewable offshore marine energy development on marine species. Aquac. Fish. 7: 211–222. https://doi.org/10.1016/j.aaf.2021.10.005.
  • Lechner, A., Ramler, D. (2015). The discharge of certain amounts of industrial microplastic from a production plant into the river Danube is permitted by the Austrian legislation. Environ. Pollut. 200: 159–160. https://doi.org/10.1016/j.envpol.2015.02.019.
  • Leybourne, M. (2022). Offshore Wind Technical Assistance for Türkiye. Marentech Expo, İzmir.
  • Life Vestas (2006). Cycle assessment of offshore and on shore sited wind power plants based on vestas V90-3.0 MW turbines. Accessed Date: 10.12.2023 https://www.vestas.com/~/media/vestas/about/sustainability/pdfs/lca_v90_june_2006.ashx is retrieved.
  • Lijin, T., Ramachandra, M. (2018). Advanced materials for wind turbine blade- A Review. Mater Today Proc 5:2635–40. https://doi.org/10.1016/j.matpr.2018.01.043.
  • Liu, P., Barlow, C.Y. (2017). Wind turbine blade waste in 2050. Waste Manag. 62: 229–40.
  • Lusher, A.L., Mchugh, M., Thompson, R.C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin 67(1–2): 94. https://doi.org/10.1016/j.marpolbul.2012.11.028.
  • Majewski, P., Florin, N., Jit, J., Rodney, A. (2022). Stewart.End-of-life policy considerations for wind turbine blades, Renewable and Sustainable Energy Reviews. 164:112538. https://doi.org/10.1016/j.rser.2022.112538.
  • Mathalon, A., Hill, P. (2014). Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81(1): 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018.
  • Momber, A.W., Marquardt, T. (2018). Protective coatings for offshore wind energy devices (OWEAs): a review. J. Coat. Technol. Res. 15 (1) 13–40. doi 10.1007/s11998-017-9979-5.
  • Moos, N.V., Burkhardtholm, P., Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus Edulis L. after an experimental exposure. Environ. Sci. Technol. 46(20): 11327–11335. https://doi.org/10.1021/es302332w.
  • Musial, W., Ram, B. (2010). Large-Scale Offshore Wind Power in the United: Assessment of Opportunities and Barriers. NREL TP-500-40745. doi: 10.2172/990101.
  • NACE SP0108-(2008). ‘‘Corrosion Control of Offshore Structures by Protective Coatings.’’ Standard Practice SP0108-2008, NACE, Houston, TX.
  • Norsok M-501-(2012). ‘‘Surface Preparation and Protective Coating. Norsok Standard M-501, Rev. 6, Standards Norway, Lysaker, Norway.
  • Price, S.J., Figueira, R.B., (2017). Corrosion Protection Systems and Fatigue Corrosionin Offshore Wind Structures: Current Status and Future Perspectives. Coatings 2017, 7(2): 25.
  • Rafiei, R., Mohseni, M., Yari, H., Mahdavi, M. (2016). Evaluation of degradability of two polyurethane refinish coatings against biological materials: A case study. Prog. Org. Coat. 93: 1–10.
  • Ramezanzadeh, B., Mohseni, M., Yari, H. (2011). On the electrochemical and structural behaviour of biologically degraded automotive coatings; Part 1: Effect of natural and simulated bird droppings. Prog. Org. Coat. 71: 19–31. https://doi.org/10.1016/j.porgcoat.2010.12.003.
  • Ramezanzadeh, B., Mohseni, M., Yari, H., Sabbaghian, S. (2009). An evaluation of an automotive clear coatperformance exposed to bird droppings under different testing approaches. Prog. Org. Coat. 66:149–160. https://doi.org/10.1016/j.porgcoat.2009.06.010.
  • Red, C. (2006). Wind turbine blades: big and getting bigger. Co posite Technology; 2006. Accessed Date: 17.12.2023, http://www.compositesworld.com/articles /wind-turbine-bladesbig-and-getting-bigger.
  • Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C. (2013). Policy: classify plastic waste as hazardous. Nature 494 (7436): 169–171. doi: 10.1038/494169a.
  • Ryan, P.G., Moore, C.J., Franeker, J.A.V., Moloney, C.L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R. Soc. B 364(1526): 1999–2012. doi:10.1098/rstb.2008.0207.
  • Sato, N. (2011). Basics of corrosion chemistry. In: Green Corrosion Chemistry and Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 1–32. https://doi.org/10.1002/9783527641789.ch1.
  • Schaumann, P., Lochte-Holtgreven, S., Steppler, S. (2011). Special Fatigue Aspects in Support Structures of Offshore Wind Turbines. Materwiss. Werkstofftechn 42 1075–1081. doi:10.1002/mawe.201100913.
  • Soerensen, P.A., Kiil, S., Dam-Johansen, K., Weinell, C.E. (2009). Anticorrosive Coatings: A Review. Journal of Coatings Technology and Research 6(2):135–176. doi:10.1007/s11998-008-9144-2.
  • Stewart, R. (2012). Wind turbine blade production - new products keep pace as scale increases. Reinforc Plast. 56(1):18–25. https://doi.org/10.1016/S0034-3617(12)70033-4.
  • TEİAŞ, Kurulu Güç Raporları (2022). Accessed Date: 17.12.2023, https://www.teias.gov.tr/kurulu-guc-raporlari is retrieved.
  • TEKMAR (2023). Accessed Date: 14.12.2023, https://deepwaterbuoyancy.com/comparing-fixed-and-floating-offshore-wind-turbines/ is retrieved.
  • The European Wind Energy Association (EWEA) (2019). Accessed Date: 10.11.2023, https://l24.im/iouvr is retrieved.
  • Thompson, R.C. (2007). Plastic debris in the marine environment: consequences and solutions. In: Marine Nature Conservation in Europe.
  • Tremeac B, Meunier F. (2009). Life cycle analysis of 4.5 MW and 250 W wind turbines. Renew Sustain Energy Rev. 13(8):2104–10.
  • Vethaak, A.D., Leslie, H.A. (2016). Plastic debris is a human health issue. Environ. Sci. Technol. 50(13): 6825. https://doi.org/10.1021/acs.est.6b02569.
  • Wang, Y., Walter, R.K., White, C., Farr, H.K., Ruttenberg, B.I. (2019a). Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast. Renew. Energy 133: 343–353. https://doi.org/10.1016/j.renene.2018.10.008.
  • Wang, Y.H., Walter, R.K., White, C., Kehrli, M.D., Hamilton, S.F., Soper, P.H., Ruttenberg, B.I. (2019b). Spatial and temporal variation of offshore wind power and its value along the Central California Coast. Environmental Research Communications 1: 121001. https://doi.org/10.1088/2515-7620/ab4ee1.
  • Zbyszewski, M., Corcoran, P.L., Hockin, A. (2014). Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 40(2): 288–299. https://doi.org/10.1016/j.jglr.2014.02.012.
  • Zou, C., Zhao, Q., Zhang, G., Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B. 3(1): 1-11. https://doi.org/10.1016/j.ngib.2016.02.001.

Chemical Approach to Offshore Wind Turbines: Coating Systems, Environmental Impacts, And Sustainable Development

Year 2024, , 131 - 144, 01.09.2024
https://doi.org/10.52998/trjmms.1415808

Abstract

The deployment of offshore wind turbines (WTs) is gaining momentum worldwide, offering significant potential for clean energy generation. However, the maintenance and longevity of offshore WT structures present complex challenges, particularly concerning corrosion protection coatings and their environmental impacts. This paper discusses the key design criteria, protective mechanisms, and application methods of coating systems for offshore WTs, emphasizing the need for durable solutions to withstand harsh marine conditions. Additionally, the study examines the chemical emissions originating from offshore wind farms, including corrosion products and plastics, and their potential ecological impacts. While there is a lack of comprehensive scientific studies on the environmental effects of deepwater, floating offshore wind farms, this paper aims to shed light on these issues and their implications for marine ecosystems and human health. By synthesizing existing literature on analogous situations, the discussion provides insights into the environmental footprints of offshore wind power and underscores the importance of prudent decision-making in advancing future offshore wind projects.

References

  • Adedipe, O., Brennan, F., Kolios, A. (2016). Review of corrosion fatigue in offshore structures: present status and challenges in the offshore wind sector. Renewable and Sustainable Energy Reviews 6:141–154. doi:10.1016/j.rser.2016.02.017.
  • Albers, H. (2009). Recycling of wind turbine rotor blades - fact or fiction? DEWI Mag. 34:32–41.
  • Anderson, T.L, Frigaard, P, Rasmussen, M.R, Martinelli, L. (2011). Loads on Wind Turbine Access Platforms with Gratings, In: Smith, JM, Lynett, P (eds.) Proc. 32nd International Conference on Coastal Engineering. Coastal Engineering Research Council.
  • Ashton, K., Holmes, L., Turner, A. (2010). Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 60 (11): 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014.
  • Auta, H.S., Emenike, C.U., Fauziah, S.H. (2017). Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ. Int. 102: 16. https://doi.org/10.1016/j.envint.2017.02.013.
  • Barnes, D.K., Galgani, F., Thompson, R.C., Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. 364 (1526): 1985. doi:10.1098/rstb.2008.0205.
  • Bejgarn, S., Macleod, M., Bogdal, C., Breitholtz, M. (2015). Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra Spinipes. Chemosphere 132: 114–119. https://doi.org/10.1016/j.chemosphere.2015.03.010.
  • Boehlert, G.W., Gill, A.B. (2015). Environmental and ecological effects of ocean renewable energy development: a current synthesis. Oceanography 23 (2): 68–81. https://doi.org/10.5670/oceanog.2010.46.
  • Brennecke, D., Ferreira, E.C., Costa, T.M.M., Appel, D., Gama, B.A.P.D., Lenz, M. (2015). Ingested microplastics (> 100 μm) are translocated to organs of the tropical fiddler crab Uca rapax. Marine Pollution Bulletin 96(1–2): 491–495. doi:10.1016/j.marpolbul.2015.05.001.
  • Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ. Sci. Technol. 45(21): 9175–9179. https://doi.org/10.1021/es201811s.
  • Browne, M.A., Galloway, T.S., Thompson, R.C. (2010). Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 44(9): 3404. https://doi.org/10.1021/es903784e.
  • Burea of Ocean Energy Management (BOEM), Central California Call Area (2021). Accessed Date: 12.11.2023, https://l24.im/aHI is retrieved.
  • Çokyaşar E., Beji S. (2013). Açık Deniz Rüzgâr Çiftliklerinin Malî Açıdan İncelenmesi, Gemi ve Deniz Teknolojisi Dergisi 216: 1300-1973.
  • Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S. (2013). Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47(12): 6646. doi:10.1021/es400663f.
  • Collignon, A., Hecq, J.H., Glagani, F., Voisin, P., Collard, F., Goffart, A. (2012). Neustonic microplastic and zooplankton in the north western Mediterranean Sea. Marine Pollution Bulletin 64 (4):861. doi:10.1016/j.marpolbul.2012.01.011.
  • Copping, A., Sather, N., Hanna, L., Whiting, J., Zydlewsk, G., Staines, G., Gill, A., Hutchison, I., O’Hagan, A.M., Simas, T., Bald, J., Sparling, C., Wood, J., Masden, E. (2016). Annex IV 2016 state of the science report: environmental effects of marine renewable energy development around the world. OES-Environmental 1–224.
  • Deveci, M., Ozcan, E., John, R., Covrig, C.F., Pamucar, D. (2020). A study on offshore wind farm siting criteria using a novel interval-valued fuzzy-rough based Delphi method. J. Environ. Manage. 270: 110916 https://doi.org/10.1016/j. jenvman.2020.110916.
  • European Agency for Safety and Health at Work (EU-OSHA), Occupational safety and health in the wind sector (2013). Accessed Date: 10.11.2023, https://l24.im/Eac is retrieved.
  • Fendall, L.S., Sewell, M.A. (2009). Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine Pollution Bulletin 58(8): 1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025.
  • Fossi, M.C., Panti, C., Guerranti, C., Coppola, D., Giannetti, M., Marsili, L., Minutoli, R. (2012). Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera Physalus). Mar. Pollut. Bull. 64(11): 2374–2379. https://doi.org/10.1016/j.marpolbul.2012.08.013.
  • Global Offshore Wind Report (GWR) (2021). Accessed Date: 11.11.2023, https://l24.im/mlHgQ is retrieved.
  • Global Wind Energy Council (GWEC), Global Wind Report 2022 (2022). Accessed Date: 12.10.2023, https://gwec.net/global-wind-report-2022/ is retrieved.
  • Global Wind Energy Council (GWEC), Global Wind Statistics 2017 (2018). Accessed Date: 18.11.2023, https://l24.im/kI9c1du is retrieved.
  • GMKA, TR22 Bölgesi Deniz Üstü Rüzgar Santrali ve Limanı Ön Fizibilite Raporu (2023). Accessed Date: 11.12.2023., https://www.gmka.gov.tr/dokumanlar/yayinlar/TR22-Bolgesi-Deniz-Ustu-Ruzgar-Santrali-Limani-On-Fizibilite-Raporu.pdf is retrieved.
  • Goldstein, M.C., Rosenberg, M., Cheng, L. (2012). Increased Oceanic Microplastic Debris Enhances Oviposition in an Endemic Pelagic Insect. Biol Lett 8(5): 817–820. doi:10.1098/rsbl.2012.0298.
  • Guezuraga B., Zauner, R., Pol, W. (2012). Life cycle assessment of two different 2 MW class wind turbines. Renew Energy 37(1):37–44. https://doi.org/10.1016/j.renene.2011.05.008.
  • Graabak, I., Korpås, M. (2016). Variability characteristics of European wind and solar power resources-a review. Energies 9 (6): 449. doi.org/10.3390/en9060449.
  • Hilbert, L.R, Black, A.R, Andersen, F., Mathiesen, T. (2011). Inspection and Monitoring of Corrosion Inside Monopile Foundations for Offshore Wind Turbines, Eurocorr 2011: European Corrosion Congress, Paper No. 4730, Stockholm, Sweden, 4–8.
  • IEA, World Energy Outlook 2023 (2023). Accessed Date: 16.12.2023 IEA, Paris https://www.iea.org/reports/world-energy-outlook-2023, Licence: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A) is retrieved.
  • Imhof, H.K., Ivleva, N.P., Schmid, J., Niessner, R., Laforsch, Christian, L. (2013). Contamination of beach sediments of a subalpine lake with microplastic particles. Curr. Biol. 23(19): R867. https://doi.org/10.1016/j.cub.2013.09.001.
  • International Renewable Energy Agency (IRENA), Renewable energy and jobs-Annual Review 2016 (2016). Accessed Date: 11.11.2023, https://l24.im/D1nl is retrieved.
  • ISO 12944-5-(2007). Paints and Varnishes—Corrosion Protection of Steel Structures by Protective Paint Systems—Part 5: Protective Paint Systems. International Standard Organization.
  • ISO 20340-(2009). Paints and Varnishes—Performance Requirements for Protective Paint Systems for Offshore and Related Structures. International Standard Organization.
  • Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. (2015). Marine pollution. Plastic waste inputs from land into the ocean. Science 347(6223): 768. doi:10.1126/science.126035.
  • James, R., Costa Ros, M. (2015). Floating Offshore Wind: Market and Technology Review. The Carbon Trust, United Kingdom 168.
  • Kaposi, K.L., Mos, B., Kelaher, B.P., Dworjanyn, S.A. (2016). Ingestion of microplastic has limited impact on a marine larva. Environ. Sci. Technol. 48(3): 1638–1645. https://doi.org/10.1021/es404295e.
  • Karteek B., Ramyakrishna P., Ravi A., Rajender B., Sashivinay K.G. (2021). The role of anticorrosive polymer coatings for the protection of metallic surface. Corros Rev 2021.
  • Kirchgeorg, T., Weinberg, I., Hörnig, M., Baier, R., Schmid, M.J., Brockmeyer, B. (2018). Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment. Marine Pollution Bulletin 136:257–26. https://doi.org/10.1016/j.marpolbul.2018.08.058.
  • Kulkarni, S.S., Edwards, D.J. (2022). A bibliometric review on the implications of renewable offshore marine energy development on marine species. Aquac. Fish. 7: 211–222. https://doi.org/10.1016/j.aaf.2021.10.005.
  • Lechner, A., Ramler, D. (2015). The discharge of certain amounts of industrial microplastic from a production plant into the river Danube is permitted by the Austrian legislation. Environ. Pollut. 200: 159–160. https://doi.org/10.1016/j.envpol.2015.02.019.
  • Leybourne, M. (2022). Offshore Wind Technical Assistance for Türkiye. Marentech Expo, İzmir.
  • Life Vestas (2006). Cycle assessment of offshore and on shore sited wind power plants based on vestas V90-3.0 MW turbines. Accessed Date: 10.12.2023 https://www.vestas.com/~/media/vestas/about/sustainability/pdfs/lca_v90_june_2006.ashx is retrieved.
  • Lijin, T., Ramachandra, M. (2018). Advanced materials for wind turbine blade- A Review. Mater Today Proc 5:2635–40. https://doi.org/10.1016/j.matpr.2018.01.043.
  • Liu, P., Barlow, C.Y. (2017). Wind turbine blade waste in 2050. Waste Manag. 62: 229–40.
  • Lusher, A.L., Mchugh, M., Thompson, R.C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin 67(1–2): 94. https://doi.org/10.1016/j.marpolbul.2012.11.028.
  • Majewski, P., Florin, N., Jit, J., Rodney, A. (2022). Stewart.End-of-life policy considerations for wind turbine blades, Renewable and Sustainable Energy Reviews. 164:112538. https://doi.org/10.1016/j.rser.2022.112538.
  • Mathalon, A., Hill, P. (2014). Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81(1): 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018.
  • Momber, A.W., Marquardt, T. (2018). Protective coatings for offshore wind energy devices (OWEAs): a review. J. Coat. Technol. Res. 15 (1) 13–40. doi 10.1007/s11998-017-9979-5.
  • Moos, N.V., Burkhardtholm, P., Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus Edulis L. after an experimental exposure. Environ. Sci. Technol. 46(20): 11327–11335. https://doi.org/10.1021/es302332w.
  • Musial, W., Ram, B. (2010). Large-Scale Offshore Wind Power in the United: Assessment of Opportunities and Barriers. NREL TP-500-40745. doi: 10.2172/990101.
  • NACE SP0108-(2008). ‘‘Corrosion Control of Offshore Structures by Protective Coatings.’’ Standard Practice SP0108-2008, NACE, Houston, TX.
  • Norsok M-501-(2012). ‘‘Surface Preparation and Protective Coating. Norsok Standard M-501, Rev. 6, Standards Norway, Lysaker, Norway.
  • Price, S.J., Figueira, R.B., (2017). Corrosion Protection Systems and Fatigue Corrosionin Offshore Wind Structures: Current Status and Future Perspectives. Coatings 2017, 7(2): 25.
  • Rafiei, R., Mohseni, M., Yari, H., Mahdavi, M. (2016). Evaluation of degradability of two polyurethane refinish coatings against biological materials: A case study. Prog. Org. Coat. 93: 1–10.
  • Ramezanzadeh, B., Mohseni, M., Yari, H. (2011). On the electrochemical and structural behaviour of biologically degraded automotive coatings; Part 1: Effect of natural and simulated bird droppings. Prog. Org. Coat. 71: 19–31. https://doi.org/10.1016/j.porgcoat.2010.12.003.
  • Ramezanzadeh, B., Mohseni, M., Yari, H., Sabbaghian, S. (2009). An evaluation of an automotive clear coatperformance exposed to bird droppings under different testing approaches. Prog. Org. Coat. 66:149–160. https://doi.org/10.1016/j.porgcoat.2009.06.010.
  • Red, C. (2006). Wind turbine blades: big and getting bigger. Co posite Technology; 2006. Accessed Date: 17.12.2023, http://www.compositesworld.com/articles /wind-turbine-bladesbig-and-getting-bigger.
  • Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C. (2013). Policy: classify plastic waste as hazardous. Nature 494 (7436): 169–171. doi: 10.1038/494169a.
  • Ryan, P.G., Moore, C.J., Franeker, J.A.V., Moloney, C.L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R. Soc. B 364(1526): 1999–2012. doi:10.1098/rstb.2008.0207.
  • Sato, N. (2011). Basics of corrosion chemistry. In: Green Corrosion Chemistry and Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 1–32. https://doi.org/10.1002/9783527641789.ch1.
  • Schaumann, P., Lochte-Holtgreven, S., Steppler, S. (2011). Special Fatigue Aspects in Support Structures of Offshore Wind Turbines. Materwiss. Werkstofftechn 42 1075–1081. doi:10.1002/mawe.201100913.
  • Soerensen, P.A., Kiil, S., Dam-Johansen, K., Weinell, C.E. (2009). Anticorrosive Coatings: A Review. Journal of Coatings Technology and Research 6(2):135–176. doi:10.1007/s11998-008-9144-2.
  • Stewart, R. (2012). Wind turbine blade production - new products keep pace as scale increases. Reinforc Plast. 56(1):18–25. https://doi.org/10.1016/S0034-3617(12)70033-4.
  • TEİAŞ, Kurulu Güç Raporları (2022). Accessed Date: 17.12.2023, https://www.teias.gov.tr/kurulu-guc-raporlari is retrieved.
  • TEKMAR (2023). Accessed Date: 14.12.2023, https://deepwaterbuoyancy.com/comparing-fixed-and-floating-offshore-wind-turbines/ is retrieved.
  • The European Wind Energy Association (EWEA) (2019). Accessed Date: 10.11.2023, https://l24.im/iouvr is retrieved.
  • Thompson, R.C. (2007). Plastic debris in the marine environment: consequences and solutions. In: Marine Nature Conservation in Europe.
  • Tremeac B, Meunier F. (2009). Life cycle analysis of 4.5 MW and 250 W wind turbines. Renew Sustain Energy Rev. 13(8):2104–10.
  • Vethaak, A.D., Leslie, H.A. (2016). Plastic debris is a human health issue. Environ. Sci. Technol. 50(13): 6825. https://doi.org/10.1021/acs.est.6b02569.
  • Wang, Y., Walter, R.K., White, C., Farr, H.K., Ruttenberg, B.I. (2019a). Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast. Renew. Energy 133: 343–353. https://doi.org/10.1016/j.renene.2018.10.008.
  • Wang, Y.H., Walter, R.K., White, C., Kehrli, M.D., Hamilton, S.F., Soper, P.H., Ruttenberg, B.I. (2019b). Spatial and temporal variation of offshore wind power and its value along the Central California Coast. Environmental Research Communications 1: 121001. https://doi.org/10.1088/2515-7620/ab4ee1.
  • Zbyszewski, M., Corcoran, P.L., Hockin, A. (2014). Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 40(2): 288–299. https://doi.org/10.1016/j.jglr.2014.02.012.
  • Zou, C., Zhao, Q., Zhang, G., Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B. 3(1): 1-11. https://doi.org/10.1016/j.ngib.2016.02.001.
There are 73 citations in total.

Details

Primary Language English
Subjects Marine Technology, Marine Structures, Maritime Engineering (Other)
Journal Section Review Article
Authors

Gülşah Çelik Gül 0000-0001-7213-1657

Metin Gül 0000-0001-6168-1768

Early Pub Date April 15, 2024
Publication Date September 1, 2024
Submission Date January 22, 2024
Acceptance Date March 16, 2024
Published in Issue Year 2024

Cite

APA Çelik Gül, G., & Gül, M. (2024). Chemical Approach to Offshore Wind Turbines: Coating Systems, Environmental Impacts, And Sustainable Development. Turkish Journal of Maritime and Marine Sciences, 10(3), 131-144. https://doi.org/10.52998/trjmms.1415808

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).