Review
BibTex RIS Cite

Denizcilik Sektöründe Yeşil Dönüşüm: Düzenlemelerin Rolü ve Etkisi

Year 2025, Volume: 11 Issue: 2, 118 - 135, 01.06.2025
https://doi.org/10.52998/trjmms.1621154

Abstract

İklim değişikliği ve çevresel sürdürülebilirlik konusundaki endişeler artmaya devam ederken, denizcilik sektörü karbon ayak izini azaltma ve daha çevreci uygulamaları benimseme konusunda artan bir baskıyla karşı karşıya bulunmaktadır. Bu çalışma, Birleşmiş Milletler Sürdürülebilir Kalkınma Amaçları (SDG) -özellikle SDG13 (İklim Eylemi), SDG7 (Erişilebilir ve Temiz Enerji) ve SDG9 (Sanayi, Yenilikçilik ve Altyapı) ile uyumlu olarak, yeşil denizcilik düzenlemelerinin denizcilik sektörü üzerindeki rolünü ve etkisini, operasyonel verimlilik, finansal yapılar ve teknolojik yenilikçilik üzerindeki etkilerine odaklanarak incelemeyi amaçlamaktadır. Çalışma, hem hedef bazlı (örn. Enerji Verimliliği Tasarım Endeksi, Karbon Yoğunluğu Göstergesi) hem de piyasa bazlı (örn. AB Emisyon Ticaret Sistemi) düzenleyici tedbirleri inceleyerek, bu politikaların sektörel verimliliği ve rekabet gücünü nasıl şekillendirdiğini değerlendirmektedir. Ayrıca, paydaşların bu düzenlemelere uyum sağlarken karşılaştıkları zorlukları ve fırsatlar vurgulanmaktadır. Bu inceleme, sürdürülebilir bir denizcilik sektörü için etkili stratejiler geliştirmede gemi işletmecileri, politika yapıcılar ve araştırmacılar için kritik bilgiler sağlamaktadır.

References

  • Ahn, J., Seong, S., Lee, J., Yun, Y. (2023). Energy efficiency and decarbonization for container fleet in international shipping based on IMO regulatory frameworks: A case study for South Korea. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 7(2–3). doi: 10.1080/25725084.2023.2247832
  • Akac, A., Anagnostopoulou, A., Kappatos, V. (2023). Evaluation of maritime industry compliance with existing environmental regulations – A benchmarking assessment from energy efficiency perspective. E3S Web of Conferences, 436, 05002. doi: 10.1051/e3sconf/202343605002
  • Akgül, E.F. (2024). Navigating decarbonization: Examining shipping companies’ fleet modernization strategies worldwide. Dokuz Eylül University Maritime Faculty Journal, 16(1): 1–21. doi: 10.18613/deudfd.1418186
  • Al-Enazi, A., Okonkwo, E. C., Bicer, Y., Al-Ansari, T. (2021). A review of cleaner alternative fuels for maritime transportation. Energy Reports, 7: 1962-1985. doi: 10.1016/j.egyr.2021.03.036
  • Allal, A. A., Mansouri, K., Youssfi, M., Qbadou, M. (2018). Toward a review of innovative solutions in the ship design and performance management for energy-saving and environmental protection. 19th IEEE Mediterranean Electrotechnical Conference (MELECON), 2-4 May 2018, s. 115-118, Marrakech, Morocco.
  • Ampah, J. D., Yusuf, A. A., Afrane, S., Jin, C., Liu, H. (2021). Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. Journal of Cleaner Production, 320: 128871. doi: 10.1016/j.jclepro.2021.128871
  • Baştuğ, S., Akgül, E. F., Haralambides, H., Notteboom, T. (2024). A decision-making framework for the funding of shipping decarbonization initiatives in non-EU countries: insights from Türkiye. Journal of Shipping and Trade, 9(1): 12. doi: 10.1186/s41072-024-00172-1
  • Branza, G. (2023). The green shipping. Study on regulations and sustainable options for decarbonization. Journal of Marine Technology and Environment, 2(2): 12–15. doi: 10.53464/JMTE.02.2023.02
  • Bui, K. Q., Perera, L. P., Emblemsvåg, J. (2021). Development of a Life-cycle Cost Framework for Retrofitting Marine Engines towards Emission Reduction in Shipping. IFAC-PapersOnLine, 54(16): 181–187. doi: 10.1016/j.ifacol.2021.10.091
  • Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, 182: 72-88. doi: 10.1016/j.enconman.2018.12.080
  • Bayraktar, M., Yuksel, O. (2023). A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations. Ocean Engineering, 278: 114295. doi: 10.1016/j.oceaneng.2023.114295
  • Bouman, E. A., Lindstad, E., Rialland, A. I., Strømman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research Part D: Transport and Environment, 52: 408-421. doi: 10.1016/j.trd.2017.03.02
  • Chang, C.-C., Chang, C.-H. (2013). Energy conservation for international dry bulk carriers via vessel speed reduction. Energy Policy, 59: 710-715. doi: 10.1016/j.enpol.2013.04.025
  • ClassNK, Outlines of EEXI Regulation (2021). Accessed Date: 27.03.2024, https://www.classnk.or.jp/hp/pdf/activities/statutory/eexi/eexi_rev3e.pdf is retrieved.
  • ClassNK, EEXI regulation (2022). Accessed Date: 27.03.2024, https://www.classnk.or.jp/hp/en/activities/statutory/eexi/index.html is retrieved.
  • DNV, EU ETS: Preliminary agreement to include shipping in the EU’s Emission Trading System from 2024 (2023). Accessed Date: 26.03.2024, https://www.dnv.com/news/eu-ets-preliminary-agreement-to-include-shipping-in-the-eu-s-emission-trading-system-from-2024-238068/ is retrieved.
  • Dong, J., Zeng, J., Yang, Y., Wang, H. (2022). A review of law and policy on decarbonization of shipping. Frontiers in Marine Science, 9: 1076352. doi: 10.3389/fmars.2022.1076352
  • Durán, C., Derpich, I., Carrasco, R. (2022). Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps. Sustainability, 14(20): 13517. doi:10.3390/su142013517
  • Economist, How the shipping sector is decarbonising (2021). Accessed Date: 22.03.2024, https://impact.economist.com/ocean/ocean-and-climate/how-the-shipping-sector-is-decarbonising is retrieved.
  • European Commission, EU action against climate change: The EU emissions trading scheme (2009). Accessed Date: 20.03.2024, https://www.ab.gov.tr/files/ardb/evt/1_avrupa_birligi/1_6_raporlar/1_3_diger/environment/eu_emmissions_trading_scheme.pdf is retrieved.
  • European Commission, The European Climate Law (2020). Accessed Date: 25.03.2024, https://ec.europa.eu/commission/presscorner/detail/en/fs_20_360 is retrieved.
  • European Commission, Commission Staff Working Document Impact Assessment: Accompanying the Proposal for a Regulation of the European Parliament and of the Council on the Use of Renewable and Low-Carbon Fuels in Maritime Transport (2021). Accessed Date: 20.03.2024, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021SC0635 is retrieved.
  • European Commission, Commission welcomes completion of key ‘Fit for 55’ legislation, putting EU on track to exceed 2030 targets (2023a). Accessed Date: 25.03.2024, https://ec.europa.eu/commission/presscorner/detail/en/ip_23_4754 is retrieved.
  • European Commission, EU Emissions Trading System (EU ETS) (2023b). Accessed Date: 25.03.2024, https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en is retrieved.
  • European Commission, FAQ – Maritime transport in EU Emissions Trading System (ETS) (2024a). Accessed Date: 27.03.2024, https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector/faq-maritime-transport-eu-emissions-trading-system-ets_en is retrieved.
  • European Commission, Reducing emissions from the shipping sector (2024b). Accessed Date: 27.03.2024, https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en is retrieved.
  • European Council, Fit for 55: Increasing the uptake of greener fuels in the aviation and maritime sectors (2023a). Accessed Date: 25.03.2024, https://www.consilium.europa.eu/en/infographics/fit-for-55-refueleu-and-fueleu/ is retrieved.
  • European Council, FuelEU maritime initiative: Council adopts new law to decarbonise the maritime sector (2023b). Accessed Date: 26.03.2024, https://www.consilium.europa.eu/en/press/press-releases/2023/07/25/fueleu-maritime-initiative-council-adopts-new-law-to-decarbonise-the-maritime-sector/ is retrieved.
  • Feng, C., Ge, S., Zeng, J., He, L., Ye, G. (2024). Mapping the Global Carbon Emissions of Marine Sectors. Environmental Science & Technology, 58(42): 18508–18519. doi:10.1021/acs.est.4c09209
  • Filippopoulos, I., Christodoulidou, X., Kiouvrekis, Y. (2024). How Can Shipping Companies Manage Environmentally Beneficial Operations in a Sustainable Way? 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), 1579–1583. doi: 10.1109/ICETSIS61505.2024.10459657
  • Fridell, E. (2019). Emissions and Fuel Use in the Shipping Sector. In: “Green Ports: Inland and Seaside Sustainable Transportation Strategies” (Editors: R. Bergqvist, J. Monios), Elsevier, pp. 19-33, Oxford.
  • Garbatov, Y., Georgiev, P., Yalamov, D. (2023). Risk-based retrofitting analysis employing the carbon intensity indicator. Ocean Engineering, 289: 116283. doi: 10.1016/j.oceaneng.2023.116283
  • Hossain, T., Adams, M., Walker, T. R. (2021). Role of sustainability in global seaports. Ocean & Coastal Management, 202, 105435. doi: 10.1016/j.ocecoaman.2020.105435
  • IEA, International Shipping (2024). Accessed Date: 20.03.2024, https://www.iea.org/energy-system/transport/international-shipping is retrieved.
  • IMO, IMO 2020 – cutting sulphur oxide emissions (2020). Accessed Date: 27.03.2024, https://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx is retrieved.
  • IMO, 2023 IMO Strategy on Reduction of GHG Emissions from Ships (2023a). Accessed Date: 27.03.2024, https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx is retrieved.
  • IMO, MEPC.1/Circ.778/Rev.4—List of Emission Control Areas, Emission Control Areas, and Particularly Sensitive Sea Areas (2023b). Accessed Date: 27.03.2024, https://wwwcdn.imo.org/localresources/en/OurWork/Circulars/Documents/MEPC.1-Circ.778-Rev.4%20-%20Special%20Areas%20and%20Emission%20Control%20Areas%20(ECAs)%20under%20MARPOL%20(Secretariat).pdf is retrieved.
  • IMO, International Convention for the Prevention of Pollution from Ships (MARPOL) (2024a). Accessed Date: 27.03.2024, https://www.imo.org/en/about/Conventions/Pages/International-Convention-for-the-Prevention-of-Pollution-from-Ships-(MARPOL).aspx is retrieved
  • IMO, Nitrogen Oxides (NOx) – Regulation 13 (2024b). Accessed Date: 26.03.2024, https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx is retrieved
  • Jia, H., Jiang, L., Azevedo, P. (2024). Green premium and the role of financial investors in sustainable investment in container shipping. Transportation Research Part E: Logistics and Transportation Review, 189: 103658. doi: 10.1016/j.tre.2024.103658
  • Lagemann, B., Lindstad, E., Fagerholt, K., Rialland, A., Ove Erikstad, S. (2022). Optimal ship lifetime fuel and power system selection. Transportation Research Part D: Transport and Environment, 102: 103145. doi: 10.1016/j.trd.2021.103145
  • Lee, T., Nam, H. (2017). A Study on Green Shipping in Major Countries: In the View of Shipyards, Shipping Companies, Ports, and Policies. The Asian Journal of Shipping and Logistics, 33(4): 253-262. doi: 10.1016/j.ajsl.2017.12.009
  • Liu, D., Zhonghao, Z., Zhang, J. (2022). Incorporating Sulfur and CO2 Emission Reduction Options into the Container Fleet Capacity Renewal Alternatives for a Shipping Operator in the Post-COVID-19 Era. Mathematical Problems in Engineering, 2022: 1–14. doi: 10.1155/2022/8805483
  • MAN Energy Solutions, Solutions complying with CII (2024). Accessed Date: 31.03.2024, https://www.man-es.com/services/new-service-solutions/retrofit-upgrade/CII is retrieved
  • Marrero, Á., Martínez-López, A. (2023). Decarbonization of Short Sea Shipping in European Union: Impact of market and goal based measures. Journal of Cleaner Production, 421: 138481. doi: 10.1016/j.jclepro.2023.138481
  • Md Moshiul, A., Mohammad, R., Fariha Anjum, H., Yesmin, A., Chelliapan, S. (2021). The Evolution of Green Shipping Practices Adoption in the International Maritime Industry. TEM Journal, 10(3): 1112-1121. doi: 10.18421/TEM103-15
  • Meng, B., Chen, S., Haralambides, H., Kuang, H., Fan, L. (2023). Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis. Energy Economics, 120: 106604. doi: 10.1016/j.eneco.2023.106604
  • Molland, A. F., Turnock, S. R., Hudson, D. A. (2014). Reducing Ship Emissions: A Review of Potential Practical Improvements in the Propulsive Efficiency of Future Ships. International Journal of Maritime Engineering, 156(A2): A175-A188. doi: 10.3940/rina.ijme.2014.a2.289
  • MOTIE, Press Releases | Ministry of Trade, Industry and Energy (2023). Accessed Date: 18.03.2024, http://english.motie.go.kr/en/pc/pressreleases/bbs/bbsView.do?bbs_seq_n=1169&bbs_cd_n=2&currentPage=1&search_key_n=&search_val_v=&cate_n=&enowparentmodules=df-streaming-module,opsconsole-csm%2Cusage-tracking-csm%2Cdata-api-proxy-csm is retrieved
  • Nelson, M., Temple, D. W., Hwang, J. T., Young, Y. L., Martins, J. R. R. A., Collette, M. (2013). Simultaneous optimization of propeller–hull systems to minimize lifetime fuel consumption. Applied Ocean Research, 43: 46-52. doi: 10.1016/j.apor.2013.07.004
  • Norlund, E. K., Gribkovskaia, I. (2013). Reducing emissions through speed optimization in supply vessel operations. Transportation Research Part D: Transport and Environment, 23: 105-113. doi: 10.1016/j.trd.2013.04.007
  • Pape, M. Decarbonising maritime transport: The EU perspective (Briefing PE.659.256; EPRS | European Parliamentary Research Service). European Parliment (2020). Accessed Date: 22.03.2024, https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/659296/EPRS_BRI(2020)659296_EN.pdf is retrieved.
  • Pereira, E. G. (2025). The implications and challenges of the IMO 2020 regulation: Exploring options for compliance. Review of European, Comparative & International Environmental Law. doi: 10.1111/reel.12593
  • Psaraftis, H. N., Zis, T., Lagouvardou, S. (2021). A comparative evaluation of market based measures for shipping decarbonization. Maritime Transport Research, 2: 100019. doi: 10.1016/j.martra.2021.100019
  • Raza, Z. (2020). Effects of regulation-driven green innovations on short sea shipping’s environmental and economic performance. Transportation Research Part D: Transport and Environment, 84: 102340. doi: 10.1016/j.trd.2020.102340
  • Rebelo, P. (2020). Green finance for a sustainable transport system: Developing a universal vernacular for green shipping. Australian and New Zealand Maritime Law Journal, 34(1): 15–30. doi: 10.2139/ssrn.3125518
  • Rizou, D. (2023). The role of finance in achieving green shipping. Australian and New Zealand Maritime Law Journal, 37(1): 1-16.
  • Schuler, M. New “Green” Technology Shipping ETF Gives Investors Access to Maritime’s Decarbonization Transition (2021). Accessed Date: 26.03.2024, https://gcaptain.com/green-shipping-etf-bsea-launched/ is retrieved.
  • Sadiq, M., Ali, S. W., Terriche, Y., Mutarraf, M. U., Hassan, M. A., Hamid, K., Ali, Z., Sze, J. Y., Su, C.-L., Guerrero, J. M. (2021). Future Greener Seaports: A Review of New Infrastructure, Challenges, and Energy Efficiency Measures. IEEE Access, 9: 75568–75587. doi: 10.1109/ACCESS.2021.3081430
  • Sherbaz, S., Maqsood, A., Khan, J. (2015). Machinery Options for Green Ship. Journal of Engineering Science and Technology Review, 8(3): 169–173. doi: 10.25103/jestr.083.22
  • Shi, Y., Gullett, W. (2018). International Regulation on Low-Carbon Shipping for Climate Change Mitigation: Development, Challenges, and Prospects. Ocean Development & International Law, 49(2): 134–156. doi: 10.1080/00908320.2018.1442178
  • Stopford, M. (2009). Maritime Economics, 3rd Edition, Routledge.
  • Sun, L., Wang, X., Lu, Y., Hu, Z. (2023). Assessment of ship speed, operational carbon intensity indicator penalty and charterer profit of time charter ships. Heliyon, 9(10): e20719. doi: 10.1016/j.heliyon.2023.e20719
  • Taskar, B., Andersen, P. (2020). Benefit of speed reduction for ships in different weather conditions. Transportation Research Part D: Transport and Environment, 85: 102337. doi: 10.1016/j.trd.2020.102337
  • T.C. Avrupa Birliği Başkanlığı, Fasıl 27: Çevre ve İklim Değişikliği (2024). Accessed Date: 25.03.2024, https://www.ab.gov.tr/p.php?e=92 is retrieved.
  • T.C. Dış İşleri Bakanlığı, Paris Anlaşması (2024). Accessed Date: 25.03.2024, https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa is retrieved.
  • Tokuşlu, A. (2020). Analyzing the Energy Efficiency Design Index (EEDI) performance of a container ship. International Journal of Environment and Geoinformatics, 7(2): 114-119. doi: 10.30897/ijegeo.703255
  • Tran, N. K., Haasis, H.-D. (2015). An empirical study of fleet expansion and growth of ship size in container liner shipping. International Journal of Production Economics, 159: 241-253. doi: 10.1016/j.ijpe.2014.09.016
  • Tsatsaronis, M., Syriopoulos, T., Gavalas, D., Boura, G., Trakadas, P., Gkorila, M. (2024). The impact of Corporate Social Responsibility on corporate financial performance: An empirical study on shipping. Maritime Policy & Management, 51(2): 226-239. doi: 10.1080/03088839.2022.2116658
  • UNFCCC, About Carbon Pricing (2024). Accessed Date: 30.03.2024, https://unfccc.int/about-us/regional-collaboration-centres/the-ciaca/about-carbon-pricing#What-is-the-current-status-of-carbon-pricing-in-th is retrieved.
  • Yalamov, D., Georgiev, P., Garbatov, Y. (2023). Economic Feasibility of Retrofitting an Ageing Ship to Improve the Environmental Footprint. Applied Sciences, 13(2): 1199. doi: 10.3390/app13021199
  • Zhao, Y., Chen, Y., Fagerholt, K., Lindstad, E., Zhou, J. (2023). Pathways towards carbon reduction through technology transition in liner shipping. Maritime Policy & Management, 1–23. doi: 10.1080/03088839.2023.2224813

Green Transformation in Maritime Industry: The Role and Impact of Regulations

Year 2025, Volume: 11 Issue: 2, 118 - 135, 01.06.2025
https://doi.org/10.52998/trjmms.1621154

Abstract

As concerns over climate change and environmental sustainability continue to grow, the shipping industry faces increasing pressure to reduce its carbon footprint and adopt greener practices. In alignment with the United Nations Sustainable Development Goals (SDGs)—particularly SDG13 (Climate Action), SDG7 (Affordable and Clean Energy), and SDG9 (Industry, Innovation, and Infrastructure), this study aims to review the role and impact of green shipping regulations on the maritime industry, focusing on their effects on operational efficiency, financial structures, and technological innovation. By examining both target-based (e.g., Energy Efficiency Design Index, Carbon Intensity Indicator) and market-based (e.g., EU Emissions Trading System) regulatory measures, the study evaluates how these policies shape industrial productivity and competitiveness. It also highlights the challenges and opportunities stakeholders encounter while adapting to these regulations. The review provides critical insights for ship operators, policymakers, and researchers in developing effective strategies for a sustainable maritime industry.

Ethical Statement

No ethics committee permissions is required for this study.

Supporting Institution

No funding was received from institutions or agencies for the execution of this research.

References

  • Ahn, J., Seong, S., Lee, J., Yun, Y. (2023). Energy efficiency and decarbonization for container fleet in international shipping based on IMO regulatory frameworks: A case study for South Korea. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 7(2–3). doi: 10.1080/25725084.2023.2247832
  • Akac, A., Anagnostopoulou, A., Kappatos, V. (2023). Evaluation of maritime industry compliance with existing environmental regulations – A benchmarking assessment from energy efficiency perspective. E3S Web of Conferences, 436, 05002. doi: 10.1051/e3sconf/202343605002
  • Akgül, E.F. (2024). Navigating decarbonization: Examining shipping companies’ fleet modernization strategies worldwide. Dokuz Eylül University Maritime Faculty Journal, 16(1): 1–21. doi: 10.18613/deudfd.1418186
  • Al-Enazi, A., Okonkwo, E. C., Bicer, Y., Al-Ansari, T. (2021). A review of cleaner alternative fuels for maritime transportation. Energy Reports, 7: 1962-1985. doi: 10.1016/j.egyr.2021.03.036
  • Allal, A. A., Mansouri, K., Youssfi, M., Qbadou, M. (2018). Toward a review of innovative solutions in the ship design and performance management for energy-saving and environmental protection. 19th IEEE Mediterranean Electrotechnical Conference (MELECON), 2-4 May 2018, s. 115-118, Marrakech, Morocco.
  • Ampah, J. D., Yusuf, A. A., Afrane, S., Jin, C., Liu, H. (2021). Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. Journal of Cleaner Production, 320: 128871. doi: 10.1016/j.jclepro.2021.128871
  • Baştuğ, S., Akgül, E. F., Haralambides, H., Notteboom, T. (2024). A decision-making framework for the funding of shipping decarbonization initiatives in non-EU countries: insights from Türkiye. Journal of Shipping and Trade, 9(1): 12. doi: 10.1186/s41072-024-00172-1
  • Branza, G. (2023). The green shipping. Study on regulations and sustainable options for decarbonization. Journal of Marine Technology and Environment, 2(2): 12–15. doi: 10.53464/JMTE.02.2023.02
  • Bui, K. Q., Perera, L. P., Emblemsvåg, J. (2021). Development of a Life-cycle Cost Framework for Retrofitting Marine Engines towards Emission Reduction in Shipping. IFAC-PapersOnLine, 54(16): 181–187. doi: 10.1016/j.ifacol.2021.10.091
  • Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, 182: 72-88. doi: 10.1016/j.enconman.2018.12.080
  • Bayraktar, M., Yuksel, O. (2023). A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations. Ocean Engineering, 278: 114295. doi: 10.1016/j.oceaneng.2023.114295
  • Bouman, E. A., Lindstad, E., Rialland, A. I., Strømman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research Part D: Transport and Environment, 52: 408-421. doi: 10.1016/j.trd.2017.03.02
  • Chang, C.-C., Chang, C.-H. (2013). Energy conservation for international dry bulk carriers via vessel speed reduction. Energy Policy, 59: 710-715. doi: 10.1016/j.enpol.2013.04.025
  • ClassNK, Outlines of EEXI Regulation (2021). Accessed Date: 27.03.2024, https://www.classnk.or.jp/hp/pdf/activities/statutory/eexi/eexi_rev3e.pdf is retrieved.
  • ClassNK, EEXI regulation (2022). Accessed Date: 27.03.2024, https://www.classnk.or.jp/hp/en/activities/statutory/eexi/index.html is retrieved.
  • DNV, EU ETS: Preliminary agreement to include shipping in the EU’s Emission Trading System from 2024 (2023). Accessed Date: 26.03.2024, https://www.dnv.com/news/eu-ets-preliminary-agreement-to-include-shipping-in-the-eu-s-emission-trading-system-from-2024-238068/ is retrieved.
  • Dong, J., Zeng, J., Yang, Y., Wang, H. (2022). A review of law and policy on decarbonization of shipping. Frontiers in Marine Science, 9: 1076352. doi: 10.3389/fmars.2022.1076352
  • Durán, C., Derpich, I., Carrasco, R. (2022). Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps. Sustainability, 14(20): 13517. doi:10.3390/su142013517
  • Economist, How the shipping sector is decarbonising (2021). Accessed Date: 22.03.2024, https://impact.economist.com/ocean/ocean-and-climate/how-the-shipping-sector-is-decarbonising is retrieved.
  • European Commission, EU action against climate change: The EU emissions trading scheme (2009). Accessed Date: 20.03.2024, https://www.ab.gov.tr/files/ardb/evt/1_avrupa_birligi/1_6_raporlar/1_3_diger/environment/eu_emmissions_trading_scheme.pdf is retrieved.
  • European Commission, The European Climate Law (2020). Accessed Date: 25.03.2024, https://ec.europa.eu/commission/presscorner/detail/en/fs_20_360 is retrieved.
  • European Commission, Commission Staff Working Document Impact Assessment: Accompanying the Proposal for a Regulation of the European Parliament and of the Council on the Use of Renewable and Low-Carbon Fuels in Maritime Transport (2021). Accessed Date: 20.03.2024, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021SC0635 is retrieved.
  • European Commission, Commission welcomes completion of key ‘Fit for 55’ legislation, putting EU on track to exceed 2030 targets (2023a). Accessed Date: 25.03.2024, https://ec.europa.eu/commission/presscorner/detail/en/ip_23_4754 is retrieved.
  • European Commission, EU Emissions Trading System (EU ETS) (2023b). Accessed Date: 25.03.2024, https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en is retrieved.
  • European Commission, FAQ – Maritime transport in EU Emissions Trading System (ETS) (2024a). Accessed Date: 27.03.2024, https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector/faq-maritime-transport-eu-emissions-trading-system-ets_en is retrieved.
  • European Commission, Reducing emissions from the shipping sector (2024b). Accessed Date: 27.03.2024, https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en is retrieved.
  • European Council, Fit for 55: Increasing the uptake of greener fuels in the aviation and maritime sectors (2023a). Accessed Date: 25.03.2024, https://www.consilium.europa.eu/en/infographics/fit-for-55-refueleu-and-fueleu/ is retrieved.
  • European Council, FuelEU maritime initiative: Council adopts new law to decarbonise the maritime sector (2023b). Accessed Date: 26.03.2024, https://www.consilium.europa.eu/en/press/press-releases/2023/07/25/fueleu-maritime-initiative-council-adopts-new-law-to-decarbonise-the-maritime-sector/ is retrieved.
  • Feng, C., Ge, S., Zeng, J., He, L., Ye, G. (2024). Mapping the Global Carbon Emissions of Marine Sectors. Environmental Science & Technology, 58(42): 18508–18519. doi:10.1021/acs.est.4c09209
  • Filippopoulos, I., Christodoulidou, X., Kiouvrekis, Y. (2024). How Can Shipping Companies Manage Environmentally Beneficial Operations in a Sustainable Way? 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), 1579–1583. doi: 10.1109/ICETSIS61505.2024.10459657
  • Fridell, E. (2019). Emissions and Fuel Use in the Shipping Sector. In: “Green Ports: Inland and Seaside Sustainable Transportation Strategies” (Editors: R. Bergqvist, J. Monios), Elsevier, pp. 19-33, Oxford.
  • Garbatov, Y., Georgiev, P., Yalamov, D. (2023). Risk-based retrofitting analysis employing the carbon intensity indicator. Ocean Engineering, 289: 116283. doi: 10.1016/j.oceaneng.2023.116283
  • Hossain, T., Adams, M., Walker, T. R. (2021). Role of sustainability in global seaports. Ocean & Coastal Management, 202, 105435. doi: 10.1016/j.ocecoaman.2020.105435
  • IEA, International Shipping (2024). Accessed Date: 20.03.2024, https://www.iea.org/energy-system/transport/international-shipping is retrieved.
  • IMO, IMO 2020 – cutting sulphur oxide emissions (2020). Accessed Date: 27.03.2024, https://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx is retrieved.
  • IMO, 2023 IMO Strategy on Reduction of GHG Emissions from Ships (2023a). Accessed Date: 27.03.2024, https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx is retrieved.
  • IMO, MEPC.1/Circ.778/Rev.4—List of Emission Control Areas, Emission Control Areas, and Particularly Sensitive Sea Areas (2023b). Accessed Date: 27.03.2024, https://wwwcdn.imo.org/localresources/en/OurWork/Circulars/Documents/MEPC.1-Circ.778-Rev.4%20-%20Special%20Areas%20and%20Emission%20Control%20Areas%20(ECAs)%20under%20MARPOL%20(Secretariat).pdf is retrieved.
  • IMO, International Convention for the Prevention of Pollution from Ships (MARPOL) (2024a). Accessed Date: 27.03.2024, https://www.imo.org/en/about/Conventions/Pages/International-Convention-for-the-Prevention-of-Pollution-from-Ships-(MARPOL).aspx is retrieved
  • IMO, Nitrogen Oxides (NOx) – Regulation 13 (2024b). Accessed Date: 26.03.2024, https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx is retrieved
  • Jia, H., Jiang, L., Azevedo, P. (2024). Green premium and the role of financial investors in sustainable investment in container shipping. Transportation Research Part E: Logistics and Transportation Review, 189: 103658. doi: 10.1016/j.tre.2024.103658
  • Lagemann, B., Lindstad, E., Fagerholt, K., Rialland, A., Ove Erikstad, S. (2022). Optimal ship lifetime fuel and power system selection. Transportation Research Part D: Transport and Environment, 102: 103145. doi: 10.1016/j.trd.2021.103145
  • Lee, T., Nam, H. (2017). A Study on Green Shipping in Major Countries: In the View of Shipyards, Shipping Companies, Ports, and Policies. The Asian Journal of Shipping and Logistics, 33(4): 253-262. doi: 10.1016/j.ajsl.2017.12.009
  • Liu, D., Zhonghao, Z., Zhang, J. (2022). Incorporating Sulfur and CO2 Emission Reduction Options into the Container Fleet Capacity Renewal Alternatives for a Shipping Operator in the Post-COVID-19 Era. Mathematical Problems in Engineering, 2022: 1–14. doi: 10.1155/2022/8805483
  • MAN Energy Solutions, Solutions complying with CII (2024). Accessed Date: 31.03.2024, https://www.man-es.com/services/new-service-solutions/retrofit-upgrade/CII is retrieved
  • Marrero, Á., Martínez-López, A. (2023). Decarbonization of Short Sea Shipping in European Union: Impact of market and goal based measures. Journal of Cleaner Production, 421: 138481. doi: 10.1016/j.jclepro.2023.138481
  • Md Moshiul, A., Mohammad, R., Fariha Anjum, H., Yesmin, A., Chelliapan, S. (2021). The Evolution of Green Shipping Practices Adoption in the International Maritime Industry. TEM Journal, 10(3): 1112-1121. doi: 10.18421/TEM103-15
  • Meng, B., Chen, S., Haralambides, H., Kuang, H., Fan, L. (2023). Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis. Energy Economics, 120: 106604. doi: 10.1016/j.eneco.2023.106604
  • Molland, A. F., Turnock, S. R., Hudson, D. A. (2014). Reducing Ship Emissions: A Review of Potential Practical Improvements in the Propulsive Efficiency of Future Ships. International Journal of Maritime Engineering, 156(A2): A175-A188. doi: 10.3940/rina.ijme.2014.a2.289
  • MOTIE, Press Releases | Ministry of Trade, Industry and Energy (2023). Accessed Date: 18.03.2024, http://english.motie.go.kr/en/pc/pressreleases/bbs/bbsView.do?bbs_seq_n=1169&bbs_cd_n=2&currentPage=1&search_key_n=&search_val_v=&cate_n=&enowparentmodules=df-streaming-module,opsconsole-csm%2Cusage-tracking-csm%2Cdata-api-proxy-csm is retrieved
  • Nelson, M., Temple, D. W., Hwang, J. T., Young, Y. L., Martins, J. R. R. A., Collette, M. (2013). Simultaneous optimization of propeller–hull systems to minimize lifetime fuel consumption. Applied Ocean Research, 43: 46-52. doi: 10.1016/j.apor.2013.07.004
  • Norlund, E. K., Gribkovskaia, I. (2013). Reducing emissions through speed optimization in supply vessel operations. Transportation Research Part D: Transport and Environment, 23: 105-113. doi: 10.1016/j.trd.2013.04.007
  • Pape, M. Decarbonising maritime transport: The EU perspective (Briefing PE.659.256; EPRS | European Parliamentary Research Service). European Parliment (2020). Accessed Date: 22.03.2024, https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/659296/EPRS_BRI(2020)659296_EN.pdf is retrieved.
  • Pereira, E. G. (2025). The implications and challenges of the IMO 2020 regulation: Exploring options for compliance. Review of European, Comparative & International Environmental Law. doi: 10.1111/reel.12593
  • Psaraftis, H. N., Zis, T., Lagouvardou, S. (2021). A comparative evaluation of market based measures for shipping decarbonization. Maritime Transport Research, 2: 100019. doi: 10.1016/j.martra.2021.100019
  • Raza, Z. (2020). Effects of regulation-driven green innovations on short sea shipping’s environmental and economic performance. Transportation Research Part D: Transport and Environment, 84: 102340. doi: 10.1016/j.trd.2020.102340
  • Rebelo, P. (2020). Green finance for a sustainable transport system: Developing a universal vernacular for green shipping. Australian and New Zealand Maritime Law Journal, 34(1): 15–30. doi: 10.2139/ssrn.3125518
  • Rizou, D. (2023). The role of finance in achieving green shipping. Australian and New Zealand Maritime Law Journal, 37(1): 1-16.
  • Schuler, M. New “Green” Technology Shipping ETF Gives Investors Access to Maritime’s Decarbonization Transition (2021). Accessed Date: 26.03.2024, https://gcaptain.com/green-shipping-etf-bsea-launched/ is retrieved.
  • Sadiq, M., Ali, S. W., Terriche, Y., Mutarraf, M. U., Hassan, M. A., Hamid, K., Ali, Z., Sze, J. Y., Su, C.-L., Guerrero, J. M. (2021). Future Greener Seaports: A Review of New Infrastructure, Challenges, and Energy Efficiency Measures. IEEE Access, 9: 75568–75587. doi: 10.1109/ACCESS.2021.3081430
  • Sherbaz, S., Maqsood, A., Khan, J. (2015). Machinery Options for Green Ship. Journal of Engineering Science and Technology Review, 8(3): 169–173. doi: 10.25103/jestr.083.22
  • Shi, Y., Gullett, W. (2018). International Regulation on Low-Carbon Shipping for Climate Change Mitigation: Development, Challenges, and Prospects. Ocean Development & International Law, 49(2): 134–156. doi: 10.1080/00908320.2018.1442178
  • Stopford, M. (2009). Maritime Economics, 3rd Edition, Routledge.
  • Sun, L., Wang, X., Lu, Y., Hu, Z. (2023). Assessment of ship speed, operational carbon intensity indicator penalty and charterer profit of time charter ships. Heliyon, 9(10): e20719. doi: 10.1016/j.heliyon.2023.e20719
  • Taskar, B., Andersen, P. (2020). Benefit of speed reduction for ships in different weather conditions. Transportation Research Part D: Transport and Environment, 85: 102337. doi: 10.1016/j.trd.2020.102337
  • T.C. Avrupa Birliği Başkanlığı, Fasıl 27: Çevre ve İklim Değişikliği (2024). Accessed Date: 25.03.2024, https://www.ab.gov.tr/p.php?e=92 is retrieved.
  • T.C. Dış İşleri Bakanlığı, Paris Anlaşması (2024). Accessed Date: 25.03.2024, https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa is retrieved.
  • Tokuşlu, A. (2020). Analyzing the Energy Efficiency Design Index (EEDI) performance of a container ship. International Journal of Environment and Geoinformatics, 7(2): 114-119. doi: 10.30897/ijegeo.703255
  • Tran, N. K., Haasis, H.-D. (2015). An empirical study of fleet expansion and growth of ship size in container liner shipping. International Journal of Production Economics, 159: 241-253. doi: 10.1016/j.ijpe.2014.09.016
  • Tsatsaronis, M., Syriopoulos, T., Gavalas, D., Boura, G., Trakadas, P., Gkorila, M. (2024). The impact of Corporate Social Responsibility on corporate financial performance: An empirical study on shipping. Maritime Policy & Management, 51(2): 226-239. doi: 10.1080/03088839.2022.2116658
  • UNFCCC, About Carbon Pricing (2024). Accessed Date: 30.03.2024, https://unfccc.int/about-us/regional-collaboration-centres/the-ciaca/about-carbon-pricing#What-is-the-current-status-of-carbon-pricing-in-th is retrieved.
  • Yalamov, D., Georgiev, P., Garbatov, Y. (2023). Economic Feasibility of Retrofitting an Ageing Ship to Improve the Environmental Footprint. Applied Sciences, 13(2): 1199. doi: 10.3390/app13021199
  • Zhao, Y., Chen, Y., Fagerholt, K., Lindstad, E., Zhou, J. (2023). Pathways towards carbon reduction through technology transition in liner shipping. Maritime Policy & Management, 1–23. doi: 10.1080/03088839.2023.2224813
There are 72 citations in total.

Details

Primary Language English
Subjects Maritime Business Administration
Journal Section Review
Authors

Ersin Fırat Akgül 0000-0002-2208-0502

Submission Date January 16, 2025
Acceptance Date February 13, 2025
Early Pub Date February 20, 2025
Publication Date June 1, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Akgül, E. F. (2025). Green Transformation in Maritime Industry: The Role and Impact of Regulations. Turkish Journal of Maritime and Marine Sciences, 11(2), 118-135. https://doi.org/10.52998/trjmms.1621154

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).