Research Article
BibTex RIS Cite

Pseudomonas sp’deki Biyosentetik Gen Kümelerinin Detaylı Genom Madenciliği Analizi

Year 2025, In Press Articles, 1 - 13
https://doi.org/10.52998/trjmms.1557940

Abstract

Son on yılda mevcut antibiyotiklere karşı çok dirençli patojen mikroorganizmaların olduğu rapor edilmiştir. Bu nedenle patojenik mikroorganizmaların sadece direnç metabolizmasını değil aynı zamanda sekonder metabolitlerini de anlamaya büyük ihtiyaç vardır. Günümüze kadar biyosentetik gen kümelerindeki seconder metabolitleri ortaya çıkarmaya yönelik genom madenciliği araçları geliştirilmiştir. Bu araçları kullanarak genomları ve sekonder metabolitleri tahmin edilen mikroorganizmalar, farmasötik ve endüstriyel çalışmalarda yaygın olarak kullanılmaktadır. Pseudomonas spp. ticari ürünler üretmek için rekombinant DNA teknolojisinde yaygın olarak kullanılmaktadır. Biyoenformatik tabanlı in silico araçları, eczacılık ve tıp için yeni biyoaktif bileşiklerin keşfedilmesine önemli ölçüde katkıda bulunmaktadır. Bu çalışma, AntiSMASH (7.0.1) kullanılarak Xiamen Körfezi'nin deniz suyundan izole edilen Pseudomonas sp. SXM-1 suşunun kapsamlı bir gen kümesi analizini yapmayı amaçlamaktadır. Pseudomonas sp.'nin erişim numarası NCBI'dan alınmıştır. Ribozomal olmayan peptitler metaloforlar (NRP-metalofor), ribozomal olmayan peptit sentetaz (NRPS), NRPS benzeri, ribozomal olarak sentezlenmiş ve translasyon sonrası modifiye edilmiş peptit benzeri (RiPP benzeri), betalakton, ribozomal olmayan peptit sentetaz (NRPS), ektoin ve N-asetilglutaminilglutamin amid (NAGGN) dahil olmak üzere 14 bölge bulunmuştur. 14 bölgenin genom analizi, farklı alanlarda potansiyel uygulamalara sahip sekonder metabolitleri ortaya çıkarmıştır. Mikrobiyologlara bu çalışmada tartışılan sekonder metabolitleri doğrulamak için laboratuvar deneyleri yapmaları şiddetle tavsiye edilir.

References

  • Anand, U., Nandy, S., Mundhra A., Das N., Pandey D. K., Dey A. (2020). A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resistance Updates, 51, 100695. doi: 10.1016/j.drup.2020.100695.
  • Arulprakasam, K. R., Dharumadurai, D. (2021). Genome mining of biosynthetic gene clusters intended for secondary metabolites conservation in actinobacteria. Microbial Pathogenesis, 161, 105252. doi:10.1016/j.micpath.2021.105252.
  • Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., Van Wezel, G. P., Medema, M. H., Weber, T. (2021). AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Research, 49(W1), W29–W35. doi:10.1093/nar/gkab335.
  • Fei, B., Li, D., Liu, X., You, X., Guo, M., Ren, Y., Liu, Y., Wang, C., Zhu, R., Li, Y. (2023). Characterization and genomic analysis of a broad-spectrum lytic phage HZ2201 and its antibiofilm efficacy against Pseudomonas aeruginosa. Virus Research, 335, 199184. doi:10.1016/j.virusres.2023.199184.
  • Girard, L., Lood, C., De Mot, R., van Noort, V., Baudart, J. (2023). Genomic diversity and metabolic potential of marine Pseudomonadaceae. Frontiers in Microbiology, 14, 1071039. https://doi.org/10.3389/fmicb.2023.1071039.
  • Goswami, D., Vaghela, H., Parmar, S., Dhandhukia, P., Thakker, J. N. (2013). Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. Journal of Plant Interactions, 8(4), 281-290. doi:10.1080/17429145.2013.768360.
  • Guo, W., Li, F., Xia, J., Wang, W. (2021). Complete genome sequence of a marine-derived bacterium Pseudomonas sp. SXM-1 and characterization of its siderophore through antiSMASH analysis and with mass spectroscopic method. Marine Genomics, 55, 100802. doi:10.1016/j.margen.2020.100802.
  • Jain, R., Bhardwaj, P., Guleria, S., Pandey, A., Kumar, S. (2023). Polyamine metabolizing rhizobacteria Pseudomonas sp. GBPI_506 modulates hormone signaling to enhance lateral roots and nicotine biosynthesis in Nicotiana benthamiana. Plant Physiology and Biochemistry, 195, 193-205. doi:10.1016/j.plaphy.2023.01.010.
  • Jin, S., Liu, L., Liu, Z., Long, X., Shao, H., Chen, J. (2013). Characterization of marine Pseudomonas spp. antagonist towards three tuber-rotting fungi from Jerusalem artichoke, a new industrial crop. Industrial Crops and Products, 43, 556-561. doi:10.1016/j.indcrop.2012.07.038.
  • Johnston, I., Osborn., L. J., Markley, R. L., McManus, E. A., Kadam, A., Schultz, K. B., Nagajothi, N., Ahern, P. P., Brown, J. M., Claesen, J. (2021). Identification of essential genes for Escherichia coli aryl polyene biosynthesis and function in biofilm formation. NPJ Biofilms and Microbiomes, 7(1), 56. doi:10.1038/s41522-021-00226-3.
  • Keller, N. P. (2019). Fungal secondary metabolism: regulation, function and drug discovery. Nature Reviews Microbiology, 17, 167–180. doi:10.1038/s41579-018-0121-1. Kumar, D., Kumar, S., Kumar, A. (2021). Extraction and characterization of secondary metabolites produced by bacteria isolated from industrial wastewater. Journal of Water Process Engineering, 40, 101811. doi:10.1016/j.jwpe.2020.101811.
  • Martens, E., Demain, A. (2017). The antibiotic resistance crisis, with a focus on the United States. The Journal of Antibiotics, 70, 520–526. doi:10.1038/ja.2017.30.
  • Medema, M. H., Blin, K., Cimermancic, P., De Jager, V., Zakrzewski, P., Fischbach, M. A., Weber, T., Takano, E., Breitling, R. (2011). AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39, W339–W346. doi:10.1093/nar/gkr466.
  • Ortega, M., van der Donk, W. (2016). New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chemical Biology, 23(1), 31-44. doi:10.1016/j.chembiol.2015.11.012.
  • Palazzotto, E., Weber, T. (2018). Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Current Opinion in Microbiology, 45, 109–116. doi:10.1016/j.mib.2018.03.004.
  • Pan, H. Q., Hu, J. C. (2015). Draft genome sequence of the novel strain Pseudomonas sp. 10B238 with potential ability to produce antibiotics from deep-sea sediment. Marine Genomics, 23, 55–57. doi:10.1016/j.margen.2015.05.003.
  • Perruchon, O., Schmitz-Afonso, I., Afonso, C., Elomri, A. (2021). State-of-the-art in analytical methods for metabolic profiling of Saccharomyces cerevisiae. Microchemical Journal, 170, 106704. doi:10.1016/j.microc.2021.106704.
  • Ramírez-Rendon, D., Passari, A. K., Ruiz-Villafán, B., Rodríguez-Sanoja, R., Sánchez, S., Demain, A. L. (2022). Impact of novel microbial secondary metabolites on the pharma industry. Applied Microbiology and Biotechnology, 106, 1855–1878. doi:10.1007/s00253-022-11821-5.
  • Reshetnikov, A. S., Khmelenina, V. N., Mustakhimov I. I., Trotsenko, Y. A. (2011). Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods in Enzymology, 495, 15–30. doi:10.1016/B978-0-12-386905-0.00002-4.
  • Riccardi, C., D'Angelo, C., Calvanese, M., Ricciardelli, A., Sellitto, A., Giurato, G., Tutino, M. L., Weisz, A., Parrilli, E., Fondi, M. (2021). Whole-genome sequencing of Pseudomonas sp. TAE6080, a strain capable of inhibiting Staphylococcus epidermidis biofilm. Marine Genomics, 60, 100887. doi:10.1016/j.margen.2021.100887.
  • Sabaté Brescó, M., Harris, L. G., Thompson, K., Stanic, B., Morgenstern, M., O'Mahony, L., Richards, R. G., Moriarty, T. F. (2017). Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Frontiers in Microbiology, 8, 1401. doi:10.3389/fmicb.2017.01401.
  • Shi, J., Xu, X., Liu, P. Y., Hu, Y. L., Zhang, B., Jiao, R. H., Bashiri, G., Tan, R. X., Ge, H. M. (2021). Discovery and biosynthesis of guanipiperazine from a NRPS-like pathway. Chemical Science. 12, 2925–2930. doi:10.1039/d0sc06135b.
  • Tiwari, V., Meena, K., Tiwari, M. (2018). Differential anti-microbial secondary metabolites in different ESKAPE pathogens explain their adaptation in the hospital setup. Infection, Genetics and Evolution, 66, 57-65. doi:10.1016/j.meegid.2018.09.010.
  • Wang, L., Yao, X. (2022). Chemical proteomics of reactive molecules. Advances in Chemical Proteomics, 157–189. doi:10.1016/B978-0-12-821433-6.00008-8.
  • Wang, G., Zhou, Y., Ma, K., Zhang, F., Ye, J., Zhong, G., Yang, X. (2021). Bioconversion of recombinantly produced precursor peptide pqqA into pyrroloquinoline quinone (PQQ) using a cell-free in vitro system. Protein Expression and Purification, 178, 105777. doi:10.1016/j.pep.2020.105777.
  • Weusthuis, R. A., Folch, P. L., Pozo-Rodríguez, A., Paul, C.E. (2020). Applying non-canonical redox cofactors in fermentation processes. iScience. 23(9), 101471. doi:10.1016/j.isci.2020.101471.
  • Wu, S., Liu, G., Jin, W., Xiu, P., Sun, C. (2016). Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa. Frontiers in Microbiology, 7, 102. doi:10.3389/fmicb.2016.00102.
  • Ye, L., Ballet, S., Hildebrand, F., Laus, G., Guillemyn, K., Raes, J., Matthijs, S., Martins, J., Cornelis, P. (2013). A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies. BioMetals, 26, 561–575. doi:10.1007/s10534-013-9653-z.
  • Zeng, Y. X., Zhang, Y. H., Qu, J. Y. (2020). Complete genome of Pseudomonas sp. DMSP-1 isolated from the Arctic seawater of Kongsfjorden, Svalbard. Marine Genomics, 49, 100689. doi:10.1016/j.margen.2019.05.004.
  • Zheng, Y., Saitou, A., Wang, C. M., Toyoda, A., Minakuchi, Y., Sekiguchi, Y., Ueda, K., Takano, H., Sakai, Y., Abe, K., Yokota, A., Yabe, S. (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Frontiers in Microbiology, 10, 893. doi:10.3389/fmicb.2019.00893.

A Comprehensive Genome Mining Analysis of Biosynthetic Gene Clusters in Pseudomonas sp. SXM-1

Year 2025, In Press Articles, 1 - 13
https://doi.org/10.52998/trjmms.1557940

Abstract

Very resistant pathogenic microorganisms have been reported to current antibiotics in the last decade. Therefore, there is a great need to understand not only resistance metabolism but also secondary metabolites of pathogenic microorganisms. Genome mining tools have so far been improved to understand secondary metabolites from biosynthetic gene clusters. Microorganisms predicted for their genomes and secondary metabolites using these tools are widely employed in pharmaceutical and industrial studies. Pseudomonas spp. are widely used in recombinant DNA technology to produce commercial products. Bioinformatics-based in silico tools significantly contribute to the discovery of new bioactive compounds for pharmacy and medicine. This study aims to conduct a comprehensive gene cluster analysis of the Pseudomonas sp. SXM-1 strain isolated from the coastal seawater of Xiamen Bay using antiSMASH (7.0.1). The accession number of Pseudomonas sp. SXM-1 strain was retrieved from NCBI. 14 regions were found, including non-ribosomal peptides metallophores (NRP-metallophore), nonribosomal peptide-synthetase (NRPS), NRPS-like, ribosomally synthesized and post-translationally modified peptide-like (RiPP-like), betalactone, nonribosomal peptide-synthetase (NRPS), ectoine and N-acetylglutaminylglutamine amide (NAGGN). Analysis of all 14 regions revealed secondary metabolites with potential applications in diverse fields. Microbiologists are strongly advised to conduct wet-lab experiments to validate the secondary metabolites discussed in this study.

References

  • Anand, U., Nandy, S., Mundhra A., Das N., Pandey D. K., Dey A. (2020). A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resistance Updates, 51, 100695. doi: 10.1016/j.drup.2020.100695.
  • Arulprakasam, K. R., Dharumadurai, D. (2021). Genome mining of biosynthetic gene clusters intended for secondary metabolites conservation in actinobacteria. Microbial Pathogenesis, 161, 105252. doi:10.1016/j.micpath.2021.105252.
  • Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., Van Wezel, G. P., Medema, M. H., Weber, T. (2021). AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Research, 49(W1), W29–W35. doi:10.1093/nar/gkab335.
  • Fei, B., Li, D., Liu, X., You, X., Guo, M., Ren, Y., Liu, Y., Wang, C., Zhu, R., Li, Y. (2023). Characterization and genomic analysis of a broad-spectrum lytic phage HZ2201 and its antibiofilm efficacy against Pseudomonas aeruginosa. Virus Research, 335, 199184. doi:10.1016/j.virusres.2023.199184.
  • Girard, L., Lood, C., De Mot, R., van Noort, V., Baudart, J. (2023). Genomic diversity and metabolic potential of marine Pseudomonadaceae. Frontiers in Microbiology, 14, 1071039. https://doi.org/10.3389/fmicb.2023.1071039.
  • Goswami, D., Vaghela, H., Parmar, S., Dhandhukia, P., Thakker, J. N. (2013). Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. Journal of Plant Interactions, 8(4), 281-290. doi:10.1080/17429145.2013.768360.
  • Guo, W., Li, F., Xia, J., Wang, W. (2021). Complete genome sequence of a marine-derived bacterium Pseudomonas sp. SXM-1 and characterization of its siderophore through antiSMASH analysis and with mass spectroscopic method. Marine Genomics, 55, 100802. doi:10.1016/j.margen.2020.100802.
  • Jain, R., Bhardwaj, P., Guleria, S., Pandey, A., Kumar, S. (2023). Polyamine metabolizing rhizobacteria Pseudomonas sp. GBPI_506 modulates hormone signaling to enhance lateral roots and nicotine biosynthesis in Nicotiana benthamiana. Plant Physiology and Biochemistry, 195, 193-205. doi:10.1016/j.plaphy.2023.01.010.
  • Jin, S., Liu, L., Liu, Z., Long, X., Shao, H., Chen, J. (2013). Characterization of marine Pseudomonas spp. antagonist towards three tuber-rotting fungi from Jerusalem artichoke, a new industrial crop. Industrial Crops and Products, 43, 556-561. doi:10.1016/j.indcrop.2012.07.038.
  • Johnston, I., Osborn., L. J., Markley, R. L., McManus, E. A., Kadam, A., Schultz, K. B., Nagajothi, N., Ahern, P. P., Brown, J. M., Claesen, J. (2021). Identification of essential genes for Escherichia coli aryl polyene biosynthesis and function in biofilm formation. NPJ Biofilms and Microbiomes, 7(1), 56. doi:10.1038/s41522-021-00226-3.
  • Keller, N. P. (2019). Fungal secondary metabolism: regulation, function and drug discovery. Nature Reviews Microbiology, 17, 167–180. doi:10.1038/s41579-018-0121-1. Kumar, D., Kumar, S., Kumar, A. (2021). Extraction and characterization of secondary metabolites produced by bacteria isolated from industrial wastewater. Journal of Water Process Engineering, 40, 101811. doi:10.1016/j.jwpe.2020.101811.
  • Martens, E., Demain, A. (2017). The antibiotic resistance crisis, with a focus on the United States. The Journal of Antibiotics, 70, 520–526. doi:10.1038/ja.2017.30.
  • Medema, M. H., Blin, K., Cimermancic, P., De Jager, V., Zakrzewski, P., Fischbach, M. A., Weber, T., Takano, E., Breitling, R. (2011). AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39, W339–W346. doi:10.1093/nar/gkr466.
  • Ortega, M., van der Donk, W. (2016). New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chemical Biology, 23(1), 31-44. doi:10.1016/j.chembiol.2015.11.012.
  • Palazzotto, E., Weber, T. (2018). Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Current Opinion in Microbiology, 45, 109–116. doi:10.1016/j.mib.2018.03.004.
  • Pan, H. Q., Hu, J. C. (2015). Draft genome sequence of the novel strain Pseudomonas sp. 10B238 with potential ability to produce antibiotics from deep-sea sediment. Marine Genomics, 23, 55–57. doi:10.1016/j.margen.2015.05.003.
  • Perruchon, O., Schmitz-Afonso, I., Afonso, C., Elomri, A. (2021). State-of-the-art in analytical methods for metabolic profiling of Saccharomyces cerevisiae. Microchemical Journal, 170, 106704. doi:10.1016/j.microc.2021.106704.
  • Ramírez-Rendon, D., Passari, A. K., Ruiz-Villafán, B., Rodríguez-Sanoja, R., Sánchez, S., Demain, A. L. (2022). Impact of novel microbial secondary metabolites on the pharma industry. Applied Microbiology and Biotechnology, 106, 1855–1878. doi:10.1007/s00253-022-11821-5.
  • Reshetnikov, A. S., Khmelenina, V. N., Mustakhimov I. I., Trotsenko, Y. A. (2011). Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods in Enzymology, 495, 15–30. doi:10.1016/B978-0-12-386905-0.00002-4.
  • Riccardi, C., D'Angelo, C., Calvanese, M., Ricciardelli, A., Sellitto, A., Giurato, G., Tutino, M. L., Weisz, A., Parrilli, E., Fondi, M. (2021). Whole-genome sequencing of Pseudomonas sp. TAE6080, a strain capable of inhibiting Staphylococcus epidermidis biofilm. Marine Genomics, 60, 100887. doi:10.1016/j.margen.2021.100887.
  • Sabaté Brescó, M., Harris, L. G., Thompson, K., Stanic, B., Morgenstern, M., O'Mahony, L., Richards, R. G., Moriarty, T. F. (2017). Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Frontiers in Microbiology, 8, 1401. doi:10.3389/fmicb.2017.01401.
  • Shi, J., Xu, X., Liu, P. Y., Hu, Y. L., Zhang, B., Jiao, R. H., Bashiri, G., Tan, R. X., Ge, H. M. (2021). Discovery and biosynthesis of guanipiperazine from a NRPS-like pathway. Chemical Science. 12, 2925–2930. doi:10.1039/d0sc06135b.
  • Tiwari, V., Meena, K., Tiwari, M. (2018). Differential anti-microbial secondary metabolites in different ESKAPE pathogens explain their adaptation in the hospital setup. Infection, Genetics and Evolution, 66, 57-65. doi:10.1016/j.meegid.2018.09.010.
  • Wang, L., Yao, X. (2022). Chemical proteomics of reactive molecules. Advances in Chemical Proteomics, 157–189. doi:10.1016/B978-0-12-821433-6.00008-8.
  • Wang, G., Zhou, Y., Ma, K., Zhang, F., Ye, J., Zhong, G., Yang, X. (2021). Bioconversion of recombinantly produced precursor peptide pqqA into pyrroloquinoline quinone (PQQ) using a cell-free in vitro system. Protein Expression and Purification, 178, 105777. doi:10.1016/j.pep.2020.105777.
  • Weusthuis, R. A., Folch, P. L., Pozo-Rodríguez, A., Paul, C.E. (2020). Applying non-canonical redox cofactors in fermentation processes. iScience. 23(9), 101471. doi:10.1016/j.isci.2020.101471.
  • Wu, S., Liu, G., Jin, W., Xiu, P., Sun, C. (2016). Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa. Frontiers in Microbiology, 7, 102. doi:10.3389/fmicb.2016.00102.
  • Ye, L., Ballet, S., Hildebrand, F., Laus, G., Guillemyn, K., Raes, J., Matthijs, S., Martins, J., Cornelis, P. (2013). A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies. BioMetals, 26, 561–575. doi:10.1007/s10534-013-9653-z.
  • Zeng, Y. X., Zhang, Y. H., Qu, J. Y. (2020). Complete genome of Pseudomonas sp. DMSP-1 isolated from the Arctic seawater of Kongsfjorden, Svalbard. Marine Genomics, 49, 100689. doi:10.1016/j.margen.2019.05.004.
  • Zheng, Y., Saitou, A., Wang, C. M., Toyoda, A., Minakuchi, Y., Sekiguchi, Y., Ueda, K., Takano, H., Sakai, Y., Abe, K., Yokota, A., Yabe, S. (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Frontiers in Microbiology, 10, 893. doi:10.3389/fmicb.2019.00893.
There are 30 citations in total.

Details

Primary Language English
Subjects Fisheries Technologies
Journal Section Research Article
Authors

Levent Çavaş 0000-0003-2136-6928

Yagmur Bilgin 0000-0002-1999-6050

İbrahim Kırkız 0000-0002-1602-1901

Early Pub Date December 31, 2024
Publication Date
Submission Date September 29, 2024
Acceptance Date December 3, 2024
Published in Issue Year 2025 In Press Articles

Cite

APA Çavaş, L., Bilgin, Y., & Kırkız, İ. (2024). A Comprehensive Genome Mining Analysis of Biosynthetic Gene Clusters in Pseudomonas sp. SXM-1. Turkish Journal of Maritime and Marine Sciences1-13. https://doi.org/10.52998/trjmms.1557940

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).