Research Article
BibTex RIS Cite

Su Pirelerinin Kalp Atışları ile Bazı Uyarıcı ve Toksik Kimyasal Çözeltilere Verdikleri Tepkilerin Belirlenmesi

Year 2025, In Press Articles, 1 - 13
https://doi.org/10.52998/trjmms.1560994

Abstract

Kolay yetiştiriciliği, vücut şeffaflığı ve kimyasal kirliliğe karşı yüksek hassasiyeti sayesinde su pireleri, ekotoksisite çalışmalarında iyi bir model olarak kabul edilmektedir. Bu çalışmada, Daphnia magna'nın kalp atışları, bilinen toksik kimyasallara maruz kaldığında temel davranışsal ve fizyolojik özelliklerini yansıtarak incelenmiştir. Farklı kimyasal özelliklere sahip oldukları bilinen kristal viole, etanol ve formaldehit toksisiteleri nedeniyle seçilmiştir. Su pirelerinde kalp atışlarını değerlendirerek kardiyovasküler performansı ölçmek için yavaş çekim video tabanlı bir yöntem düzenlenmiştir. Kalp atışları, vücut tepkileri ve kalp kasılmaları gibi önemli parametrelere ilişkin veriler video kayıtlarından ve matematiksel hesaplamalardan elde edilmiştir. Çalışmanın sonuçları oldukça dikkat çekicidir. Kristal viole’nin Daphnia magna'nın kalp atışlarını (489±14.19), etanol (450±40.67) ve formaldehitten (445±48.21) daha belirgin bir şekilde artırdığı bulunmuştur. Kontrol grubuyla karşılaştırıldığında, formaldehit su pirelerinde %28.51 oranında bir kalp atış artışına neden olurken, etanol (%30.54) ve kristal violet (%35.89) su pirelerinin kalp atışlarında daha düşük bir artışa yol açmıştır. Bu kardiyovasküler parametreler kullanılarak, uyarıcı ve toksik kimyasal çözeltilerin su pireleri üzerindeki potansiyel etkileri kesin bir şekilde ölçülmüştür. Daphnia magna, en güçlü kalp atışlarına sahip olduğu ve ekotoksisite değerlendirmesi için uygun olduğu belirlenmiştir. Üç kimyasalın hepsine kısa süreli maruziyet sonucunda organizmanın kalp atışlarında bir artış gözlemlenmiş, ancak uzun süreli maruziyetlerin toksik etkilere yol açarak ölümlere neden olabileceği tespit edilmiştir.

References

  • Ahmed, S. (2023). Applications of Daphnia magna in Ecotoxicological Studies: A Review. Journal of Advanced Research in Biology, 6(2): 16-35.
  • Allen, M., Aguirre, M., Chesley, S., Sroczynski, M., Reeves, S. (2019). CBD Water and Nicotine: The Effects on Daphnia magna’s Neurogenic Pacemaker Not What You May Expect. Journal of Undergraduate Biology Laboratory Investigations, 2(2): 1-4.
  • Altshuler, I., Demiri, B., Xu, S., Constantin, A., Yan, N. D., Cristescu, M.E. (2011). An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integrative And Comparative Biology, 51(4): 623-633.
  • Angus-Whiteoak, A.M. (2018). From Ecological Epitome to Medical Model: An Investigation into Applications for the Use of Daphnia in Heart Science Ph.D. Thesis, Liverpool John Moores University, United Kingdom, 275 p., Liverpool.
  • Atamanalp, M. (2024). Aquatic Toxicology in Freshwater: The Multiple Biomarker Approach. Springer Nature. ISBN 978-3-031-56669-1 (eBook), https://doi.org/10.1007/978-3-031-56669-1 Bedrossiantz, J., Faria, M., Prats, E., Barata, C., Cachot, J., Raldúa, D. (2023). Heart rate and behavioral responses in three phylogenetically distant aquatic model organisms exposed to environmental concentrations of carbaryl and fenitrothion. Science of The Total Environment, 865: 161268.
  • Bownik, A., Stępniewska, Z. (2015). Ectoine alleviates behavioural, physiological and biochemical changes in Daphnia magna subjected to formaldehyde. Environmental Science and Pollution Research, 22: 15549-15562.
  • Chevalier, J. (2014). Utilisation du comportement natatoire de Daphnia magna comme indicateur sensible et précoce de toxicité pour l'évaluation de la qualité de l'eau. Ph.D. Thesis, Université de Bordeaux, 158 p., Bordeaux.
  • Chung W., Song J.M., Lee J. (2016). The Evaluation of Titanium Dioxide Nanoparticle Effects on Cardiac and Swimming Performance of Daphnia magna. International Journal of Applied Environmental Sciences, 11: 1375–1385.
  • Connon, R.E., Geist, J., Werner, I. (2012). Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors, 12(9): 12741-12771.
  • Dukić, M. (2016). Genomics of sexual and asexual reproduction in Daphnia magna, PhD. Thesis, University of Basel, 153 p., Basel.
  • Earleywine, M., Martin, C.S. (1993). Anticipated stimulant and sedative effects of alcohol vary with dosage and limb of the blood alcohol curve. Alcoholism: Clinical and Experimental Research, 17(1): 135-139.
  • Ebert D. (2005). Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. Bethesda (MD): National Center for Biotechnology Information (US), ISBN-10: 1-932811-06-0.
  • Ebert, D. (2022). Daphnia as a versatile model system in ecology and evolution. EvoDevo, 13(1): 16.
  • Gerber, N. (2018). Cyclical parthenogenesis and the evolution of sex: The causes and consequences of facultative sex. Ph.D. Thesis, University of Zurich, 157 p., Zurich.
  • Greene M., Pitts W., Dewprashad B. (2017). Using Videography to Study the Effects of Stimulants on Daphnia magna. The American Biology Teacher, 79: 35–40. doi: 10.1525/abt.2017.79.1.35.
  • Guilhermino L., Diamantino T., Silva M.C., Soares A. (2000). Acute toxicity test with Daphnia magna: An alternative to mammals in the prescreening of chemical toxicity?. Ecotoxicology and Environmental Safety, 46: 357–362. doi: 10.1006/eesa.2000.1916.
  • Hellou, J. (2011). Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environmental Science and Pollution Research, 18: 1-11. Johnsen, S. (2001). Hidden in plain sight: the ecology and physiology of organismal transparency. The Biological Bulletin, 201(3): 301-318.
  • Kaas, B., Krishnarao, K., Marion, E., Stuckey, L., Kohn, R. (2009). Effects of melatonin and ethanol on the heart rate of Daphnia magna. Impulse: The Premier Journal for Undergraduate Publications in the Neurosciences, 1-8.
  • Kim, H.J., Koedrith, P., Seo, Y.R. (2015). Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism. International Journal of Molecular Sciences, 16(6): 12261-12287.
  • Kwon, I. H., Kim, I. Y., Heo, M. B., Park, J. W., Lee, S.W., Lee, T.G. (2021). Real-time heart rate monitoring system for cardiotoxicity assessment of Daphnia magna using high-speed digital holographic microscopy. Science of the Total Environment, 780: 146405.
  • Kundu A., Singh G. (2018). Dopamine synergizes with caffeine to increase the heart rate of Daphnia. F1000 Research, 7: 254.
  • Lari, E., Steinkey, D., Pyle, G.G. (2017). A novel apparatus for evaluating contaminant effects on feeding activity and heart rate in Daphnia spp. Ecotoxicology and Environmental Safety, 135: 381-386.
  • Li, F., He, X., Niu, W., Feng, Y., Bian, J., Xiao, H. (2015). Acute and sub-chronic toxicity study of the ethanol extract from leaves of Aralia elata in rats. Journal of Ethnopharmacology, 175: 499-508.
  • Major, C., Diaz, D., Corotto, F. (2010). Making the Daphnia heart rate lab work: Optimizing the use of club soda and isopropyl alcohol. Georgia Journal of Science, 68(2): 9.
  • Mani, S., Bharagava, R.N. (2016). Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. In: “Reviews of environmental contamination and toxicology,” (Editor: P. De Voogt), 237, 71-97). https://doi.org/10.1007/978-3-319-23573-8_4
  • Matveeva, S., Ngo, K., Murray, C., Weathers, H., Roberts, B. (2018). The Effect of Caffeine on the Contractility of the Heart Muscle in Daphnia. Journal of Undergraduate Biology Laboratory Investigations, 1 (2): 1-4.
  • McLaughlin, J.K. (1994). Formaldehyde and cancer: A critical review. International Archives of Occupational and Environmental Health, 66: 295-301.
  • Ngu, M.S., Vanselow, D.J., Zaino, C.R., Lin, A.Y., Copper, J.E., Beaton, M.J., Orsini, L., Colbourne, J.K., Cheng, K.C., Ang, K.C. (2022). A web-based histology atlas for the freshwater Cladocera species Daphnia magna, BioRxiv, 1-34. https://doi.org/10.1101/2022.03.09.483544
  • Norambuena, J.A., Farias, J., De los Ríos, P. (2019). The water flea Daphnia pulex (Cladocera, Daphniidae), a possible model organism to evaluate aspects of freshwater ecosystems. Crustaceana, 92(11-12): 1415-1426.
  • Offem B.O., Ayotunde E.O. (2008). Toxicity of lead to freshwater invertebrates (Water fleas; Daphnia magna and Cyclop sp.) in fish ponds in a tropical floodplain. Water, Air, & Soil Pollution, 192: 39–46. doi: 10.1007/s11270-008-9632-0.
  • Paprocki, S., Qassem, M., Kyriacou, P.A. (2022). Review of ethanol intoxication sensing technologies and techniques. Sensors, 22(18): 6819. https://doi.org/10.3390/s22186819
  • Perez, K., Lucas, C.J., Jeffries, B., Legg, T. (2019). Increasing heart rate of Daphnia magna in an excitatory monosodium glutamate solution versus decreasing heart rates in a depressive ethanol solution, JUBLI, 2:2, 1-5.
  • Protano, C., Buomprisco, G., Cammalleri, V., Pocino, R.N., Marotta, D., Simonazzi, S., Vitali, M. (2021). The carcinogenic effects of formaldehyde occupational exposure: A systematic review. Cancers, 14(1): 165.
  • Rodrigues, S., Pinto, I., Nogueira, S., Antunes, S.C. (2022). Perspective Chapter: Daphnia magna as a Potential Indicator of Reservoir Water Quality–Current Status and Perspectives Focused in Ecotoxicological Classes Regarding the Risk Prediction. In: “Limnology The Importance of Monitoring and Correlations of Lentic and Lotic Waters”, (Editors: Massarelli, C., & Campanale, C.), IntechOpen. https://doi.org/10.5772/intechopen.100936
  • Rosenkranz, P. (2010). The ecotoxicology of nanoparticles in Daphnia magna. Ph.D. Thesis, Edınburgh Napıer University, 181 p., Edinburgh.
  • Santoso, F., Krylov, V.V., Castillo, A.L., Saputra, F., Chen, H.M., Lai, H.T., Hsiao, C.D. (2020). Cardiovascular performance measurement in water fleas by utilizing high-speed videography and ImageJ software and its application for pesticide toxicity assessment. Animals, 10(9): 1587.
  • Saputra, F., Suryanto, M. E., Audira, G., Luong, C. T., Hung, C. H., Roldan, M. J., Hsiao, C.D. (2023). Using DeepLabCut for markerless cardiac physiology and toxicity estimation in water fleas (Daphnia magna). Aquatic Toxicology, 263: 106676.
  • Sönmez, V.Z., Sivri, N. (2016). Interlaboratory precision of acute toxicity tests using reference toxicant formaldehyde. Journal of Anatolian Environmental and Animal Sciences, 1(3): 96-99.
  • Sönmez, V.Z., Akarsu, C., Sivri, N. (2022). The ecotoxicological effects of microplastics on trophic levels of aquatic ecosystems. In: “Microplastic Pollution: Environmental Occurrence and Treatment Technologies”, (Editor: Zaffar Hashmi), Cham:Springer International Publishing, 389-428,
  • Stein, R., Richter, W., Zussman, R., Brynjolfsson, G. (1965). Ultrastructural Characterization of Daphnia Heart. Muscle, 1-29(1):168–170.
  • Suman, K.H., Haque, M.N., Uddin, M.J., Begum, M.S., Sikder, M.H. (2021). Toxicity and biomarkers of microplastic in aquatic environment: A review. Biomarkers, 26(1): 13-25.
  • Tomar, S. (2024). Daphnia: A full overview, Microbiology https://microscopeclarity.com/daphnia-a-full-overview/
  • Villegas-Navarro, A., González, M.R., Lopez, E.R., Aguilar, R.D., Marcal, W.S. (1999). Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters. Environment International, 25(5): 619-624.
  • Villegas-Navarro, A., Rosas L.E., Reyes, J.L., Hernández, M. (2003). The heart of Daphnia magna: Effects of four cardioactive drugs. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 136(2): 127-134. https://doi.org/10.1016/S1532-0456(03)00173-9
  • Zhang, L. (2018). Formaldehyde: Exposure, Toxicity and Health Effects. The Royal Society of Chemistry. ECCC Environmental eBooks 1968-2022 https://doi.org/10.1039/9781788010269

Determining the Response of Water Fleas to Some of the Excitatory and Toxic Chemical Solutions by Heart Rates

Year 2025, In Press Articles, 1 - 13
https://doi.org/10.52998/trjmms.1560994

Abstract

Water fleas have become a valuable model for ecotoxicity studies due to their ease of cultivation, transparent bodies, and high sensitivity to chemical pollutants. In this study, heart rates in Daphnia magna were examined reflecting the basic behavioral and physiological characteristics when exposed to known toxic chemicals. Crystal violet, ethanol, and formaldehyde, known for their toxicity, were selected due to their different chemical properties. A slow-motion video-based method was organized to measure cardiovascular performance by evaluating the heart rates in water fleas. Data for important parameters like heart rates, body reactions, and heart contraction were extracted from video recordings and mathematical calculations. The results of study were quite remarkable. It was found that crystal violet increased the heart rates of Daphnia magna (489±14.19) more significantly than ethanol (450±40.67) and formaldehyde (445±48.21). Compared to the control group, formaldehyde caused a 28.51% increase in the heart rates of daphnids, while exposure to ethanol (30.54%) and crystal violet (35.89%) resulted in a lower increase in the heart rates of daphnids. Using these cardiovascular parameters, the potential effects of excitatory and toxic chemical solutions on water fleas were accurately measured. Daphnia magna was identified as having the strongest heart rates and is deemed suitable for ecotoxicity assessment. The result of exposure to all three chemicals was an increase in the organism’s heart rates during short-term exposures, while long-term exposures could lead to toxic effects, causing fatalities.

References

  • Ahmed, S. (2023). Applications of Daphnia magna in Ecotoxicological Studies: A Review. Journal of Advanced Research in Biology, 6(2): 16-35.
  • Allen, M., Aguirre, M., Chesley, S., Sroczynski, M., Reeves, S. (2019). CBD Water and Nicotine: The Effects on Daphnia magna’s Neurogenic Pacemaker Not What You May Expect. Journal of Undergraduate Biology Laboratory Investigations, 2(2): 1-4.
  • Altshuler, I., Demiri, B., Xu, S., Constantin, A., Yan, N. D., Cristescu, M.E. (2011). An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integrative And Comparative Biology, 51(4): 623-633.
  • Angus-Whiteoak, A.M. (2018). From Ecological Epitome to Medical Model: An Investigation into Applications for the Use of Daphnia in Heart Science Ph.D. Thesis, Liverpool John Moores University, United Kingdom, 275 p., Liverpool.
  • Atamanalp, M. (2024). Aquatic Toxicology in Freshwater: The Multiple Biomarker Approach. Springer Nature. ISBN 978-3-031-56669-1 (eBook), https://doi.org/10.1007/978-3-031-56669-1 Bedrossiantz, J., Faria, M., Prats, E., Barata, C., Cachot, J., Raldúa, D. (2023). Heart rate and behavioral responses in three phylogenetically distant aquatic model organisms exposed to environmental concentrations of carbaryl and fenitrothion. Science of The Total Environment, 865: 161268.
  • Bownik, A., Stępniewska, Z. (2015). Ectoine alleviates behavioural, physiological and biochemical changes in Daphnia magna subjected to formaldehyde. Environmental Science and Pollution Research, 22: 15549-15562.
  • Chevalier, J. (2014). Utilisation du comportement natatoire de Daphnia magna comme indicateur sensible et précoce de toxicité pour l'évaluation de la qualité de l'eau. Ph.D. Thesis, Université de Bordeaux, 158 p., Bordeaux.
  • Chung W., Song J.M., Lee J. (2016). The Evaluation of Titanium Dioxide Nanoparticle Effects on Cardiac and Swimming Performance of Daphnia magna. International Journal of Applied Environmental Sciences, 11: 1375–1385.
  • Connon, R.E., Geist, J., Werner, I. (2012). Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors, 12(9): 12741-12771.
  • Dukić, M. (2016). Genomics of sexual and asexual reproduction in Daphnia magna, PhD. Thesis, University of Basel, 153 p., Basel.
  • Earleywine, M., Martin, C.S. (1993). Anticipated stimulant and sedative effects of alcohol vary with dosage and limb of the blood alcohol curve. Alcoholism: Clinical and Experimental Research, 17(1): 135-139.
  • Ebert D. (2005). Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. Bethesda (MD): National Center for Biotechnology Information (US), ISBN-10: 1-932811-06-0.
  • Ebert, D. (2022). Daphnia as a versatile model system in ecology and evolution. EvoDevo, 13(1): 16.
  • Gerber, N. (2018). Cyclical parthenogenesis and the evolution of sex: The causes and consequences of facultative sex. Ph.D. Thesis, University of Zurich, 157 p., Zurich.
  • Greene M., Pitts W., Dewprashad B. (2017). Using Videography to Study the Effects of Stimulants on Daphnia magna. The American Biology Teacher, 79: 35–40. doi: 10.1525/abt.2017.79.1.35.
  • Guilhermino L., Diamantino T., Silva M.C., Soares A. (2000). Acute toxicity test with Daphnia magna: An alternative to mammals in the prescreening of chemical toxicity?. Ecotoxicology and Environmental Safety, 46: 357–362. doi: 10.1006/eesa.2000.1916.
  • Hellou, J. (2011). Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environmental Science and Pollution Research, 18: 1-11. Johnsen, S. (2001). Hidden in plain sight: the ecology and physiology of organismal transparency. The Biological Bulletin, 201(3): 301-318.
  • Kaas, B., Krishnarao, K., Marion, E., Stuckey, L., Kohn, R. (2009). Effects of melatonin and ethanol on the heart rate of Daphnia magna. Impulse: The Premier Journal for Undergraduate Publications in the Neurosciences, 1-8.
  • Kim, H.J., Koedrith, P., Seo, Y.R. (2015). Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism. International Journal of Molecular Sciences, 16(6): 12261-12287.
  • Kwon, I. H., Kim, I. Y., Heo, M. B., Park, J. W., Lee, S.W., Lee, T.G. (2021). Real-time heart rate monitoring system for cardiotoxicity assessment of Daphnia magna using high-speed digital holographic microscopy. Science of the Total Environment, 780: 146405.
  • Kundu A., Singh G. (2018). Dopamine synergizes with caffeine to increase the heart rate of Daphnia. F1000 Research, 7: 254.
  • Lari, E., Steinkey, D., Pyle, G.G. (2017). A novel apparatus for evaluating contaminant effects on feeding activity and heart rate in Daphnia spp. Ecotoxicology and Environmental Safety, 135: 381-386.
  • Li, F., He, X., Niu, W., Feng, Y., Bian, J., Xiao, H. (2015). Acute and sub-chronic toxicity study of the ethanol extract from leaves of Aralia elata in rats. Journal of Ethnopharmacology, 175: 499-508.
  • Major, C., Diaz, D., Corotto, F. (2010). Making the Daphnia heart rate lab work: Optimizing the use of club soda and isopropyl alcohol. Georgia Journal of Science, 68(2): 9.
  • Mani, S., Bharagava, R.N. (2016). Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. In: “Reviews of environmental contamination and toxicology,” (Editor: P. De Voogt), 237, 71-97). https://doi.org/10.1007/978-3-319-23573-8_4
  • Matveeva, S., Ngo, K., Murray, C., Weathers, H., Roberts, B. (2018). The Effect of Caffeine on the Contractility of the Heart Muscle in Daphnia. Journal of Undergraduate Biology Laboratory Investigations, 1 (2): 1-4.
  • McLaughlin, J.K. (1994). Formaldehyde and cancer: A critical review. International Archives of Occupational and Environmental Health, 66: 295-301.
  • Ngu, M.S., Vanselow, D.J., Zaino, C.R., Lin, A.Y., Copper, J.E., Beaton, M.J., Orsini, L., Colbourne, J.K., Cheng, K.C., Ang, K.C. (2022). A web-based histology atlas for the freshwater Cladocera species Daphnia magna, BioRxiv, 1-34. https://doi.org/10.1101/2022.03.09.483544
  • Norambuena, J.A., Farias, J., De los Ríos, P. (2019). The water flea Daphnia pulex (Cladocera, Daphniidae), a possible model organism to evaluate aspects of freshwater ecosystems. Crustaceana, 92(11-12): 1415-1426.
  • Offem B.O., Ayotunde E.O. (2008). Toxicity of lead to freshwater invertebrates (Water fleas; Daphnia magna and Cyclop sp.) in fish ponds in a tropical floodplain. Water, Air, & Soil Pollution, 192: 39–46. doi: 10.1007/s11270-008-9632-0.
  • Paprocki, S., Qassem, M., Kyriacou, P.A. (2022). Review of ethanol intoxication sensing technologies and techniques. Sensors, 22(18): 6819. https://doi.org/10.3390/s22186819
  • Perez, K., Lucas, C.J., Jeffries, B., Legg, T. (2019). Increasing heart rate of Daphnia magna in an excitatory monosodium glutamate solution versus decreasing heart rates in a depressive ethanol solution, JUBLI, 2:2, 1-5.
  • Protano, C., Buomprisco, G., Cammalleri, V., Pocino, R.N., Marotta, D., Simonazzi, S., Vitali, M. (2021). The carcinogenic effects of formaldehyde occupational exposure: A systematic review. Cancers, 14(1): 165.
  • Rodrigues, S., Pinto, I., Nogueira, S., Antunes, S.C. (2022). Perspective Chapter: Daphnia magna as a Potential Indicator of Reservoir Water Quality–Current Status and Perspectives Focused in Ecotoxicological Classes Regarding the Risk Prediction. In: “Limnology The Importance of Monitoring and Correlations of Lentic and Lotic Waters”, (Editors: Massarelli, C., & Campanale, C.), IntechOpen. https://doi.org/10.5772/intechopen.100936
  • Rosenkranz, P. (2010). The ecotoxicology of nanoparticles in Daphnia magna. Ph.D. Thesis, Edınburgh Napıer University, 181 p., Edinburgh.
  • Santoso, F., Krylov, V.V., Castillo, A.L., Saputra, F., Chen, H.M., Lai, H.T., Hsiao, C.D. (2020). Cardiovascular performance measurement in water fleas by utilizing high-speed videography and ImageJ software and its application for pesticide toxicity assessment. Animals, 10(9): 1587.
  • Saputra, F., Suryanto, M. E., Audira, G., Luong, C. T., Hung, C. H., Roldan, M. J., Hsiao, C.D. (2023). Using DeepLabCut for markerless cardiac physiology and toxicity estimation in water fleas (Daphnia magna). Aquatic Toxicology, 263: 106676.
  • Sönmez, V.Z., Sivri, N. (2016). Interlaboratory precision of acute toxicity tests using reference toxicant formaldehyde. Journal of Anatolian Environmental and Animal Sciences, 1(3): 96-99.
  • Sönmez, V.Z., Akarsu, C., Sivri, N. (2022). The ecotoxicological effects of microplastics on trophic levels of aquatic ecosystems. In: “Microplastic Pollution: Environmental Occurrence and Treatment Technologies”, (Editor: Zaffar Hashmi), Cham:Springer International Publishing, 389-428,
  • Stein, R., Richter, W., Zussman, R., Brynjolfsson, G. (1965). Ultrastructural Characterization of Daphnia Heart. Muscle, 1-29(1):168–170.
  • Suman, K.H., Haque, M.N., Uddin, M.J., Begum, M.S., Sikder, M.H. (2021). Toxicity and biomarkers of microplastic in aquatic environment: A review. Biomarkers, 26(1): 13-25.
  • Tomar, S. (2024). Daphnia: A full overview, Microbiology https://microscopeclarity.com/daphnia-a-full-overview/
  • Villegas-Navarro, A., González, M.R., Lopez, E.R., Aguilar, R.D., Marcal, W.S. (1999). Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters. Environment International, 25(5): 619-624.
  • Villegas-Navarro, A., Rosas L.E., Reyes, J.L., Hernández, M. (2003). The heart of Daphnia magna: Effects of four cardioactive drugs. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 136(2): 127-134. https://doi.org/10.1016/S1532-0456(03)00173-9
  • Zhang, L. (2018). Formaldehyde: Exposure, Toxicity and Health Effects. The Royal Society of Chemistry. ECCC Environmental eBooks 1968-2022 https://doi.org/10.1039/9781788010269
There are 45 citations in total.

Details

Primary Language English
Subjects Aquaculture and Fisheries (Other)
Journal Section Research Article
Authors

Arda Sarp Karademir 0009-0000-6295-7818

Melisa Can 0009-0008-3551-9888

V. Zülal Sönmez 0000-0002-7488-2996

Nüket Sivri 0000-0002-4269-5950

Early Pub Date December 4, 2024
Publication Date
Submission Date October 4, 2024
Acceptance Date November 12, 2024
Published in Issue Year 2025 In Press Articles

Cite

APA Karademir, A. S., Can, M., Sönmez, V. Z., Sivri, N. (2024). Determining the Response of Water Fleas to Some of the Excitatory and Toxic Chemical Solutions by Heart Rates. Turkish Journal of Maritime and Marine Sciences1-13. https://doi.org/10.52998/trjmms.1560994

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).