Research Article
BibTex RIS Cite

Rhizogenesis in Shrub rose cultivated in vitro

Year 2024, , 187 - 196, 15.10.2024
https://doi.org/10.23902/trkjnat.1464147

Abstract

The study of the reproduction characteristics of roses of the garden class Shrub, the defini-tion of the dependence of the hormonal determination of explant rhizogenesis on the con-centrations of phytohormones that are part of the nutrient medium, are relevant and has both scientific and practical interest. This study presents the results of studies of hormonal de-termination of rhizogenesis in explants of cultivars of roses of the garden class Shrub: Gärt-nerfreude, Lavender Dream, Pomponella, Red Cascade, Sommerabend cultivated in vitro on nutrient medium containing growth regulators. It has been established that of the nutrient medium modified by the addition of 0.2-1.0 mg/l α-naphthylacetic acid (α-NAA), the most effective was the medium with the content of α-NAA 0.5 mg/l, the content of macro- and microelements half of the Murashige and Skoog prescriptions, and a decrease in the sucrose content to 2.0%. On this medium, the frequency of rhizogenesis averaged 61.2% for the studied cultivars. Hormonal determination of rhizogenesis and efficiency of root formation in vitro in the Shrub rose regenerants depended on the genotype of the plant: cv. Lavender Dream (66.0%) and cv. Sommerabend (67.0%) had the highest rhizogenesis ability. The use of the universal growth regulator Humifield in combination with 0.5 mg/l α-NAA contribut-ed to an increase in the rooting rate of the studied rose cultivars up to 70.0-86.0%.

References

  • 1. Afrin, S., Rahman, M., Khalekuzzaman, M., Hasan, M., Fahim, A. & Alam, M. 2022. Study on in vitro micropropagation of Rosa sp. Bangladesh Journal of Agriculture, 47(1): 66-74. https://doi.org/10.3329/bjagri.v47i1.60593
  • 2. Al-Mayahi, A. 2021. The effect of humic acid (HA) and zinc oxide nanoparticles (ZnO-NPS) on in vitro regeneration of date palm (Phoenix dactylifera L.) cv. Quntar. Plant Cell, Tissue and Organ Culture (PCTOC), 145: 445-456.
  • 3. Arnold, N., Binns, M., Cloutier, C., Barthakur, N. & Pellerin, R. 1995. Auxins, salt concentrations and their interactions during in vitro rooting of winter-hardy and hybrid tea roses. Horticultural Science, 30(7): 1436-1440.
  • 4. Attia, A., Dessoky, E. & El-Tarras, A. 2012. In vitro propagation of Rosa hybrida L. cv. Al-Taif Rose plant. African Journal of Biotechnology, 11(48): 10888-10893. https://doi.org/10.5897/AJB12.781
  • 5. Baig, M., Hafiz, I., Hussain, A., Ahmad, T. & Abbasi, N. 2011. An efficient protocol for in vitro propagation of Rosa gruss an teplitz and Rosa centifolia. African Journal of Biotechnology, 10(22): 4564-4573. https://doi.org/10.5897/AJB10.2051
  • 6. Bidabadi, S. & Jain, S. 2020. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants, 9(6): 702.
  • 7. Carelli, B. & Echeverrigaray, S. 2002. An improved system for the in vitro propagation of rose cultivars. Scientia Horticulturae, 92: 69-74. https://doi.org/10.1016/S0304-4238(01)00280-1
  • 8. Chauhan, U., Singh, A., Godani, D., Handa, S., Gupta, P., Patel, S. & Joshi, P. 2018. Some natural extracts from plants as lowcost alternatives for synthetic PGRs in rose micropropagation. Journal of Applied Horticulturae, 20: 103-111. https://doi.org/10.37855/jah.2018.v20i02.19
  • 9. Chawla, H. 2011. Introduction to plant biotechnology. CRC Press, 760 рр.
  • 10. Chen, Y. & Aviad, T. 1990. Effects of humic substances on plant growth. рр. 161-186. In: Maccarthy, P., Clapp, C.E., Malcolm, R.L. & Bloom, P.R. (eds). Humic substances in soil and crop sciences: Selected readings. Madison: Soil Science Society of America. https://doi.org/10.2136/1990.humicsubstances.c7
  • 11. Datta, S., Chakraborty, D., Deepti D., Mandal, A. & Saxena, M. 2002. In vitro petal culture and callus formation in Rosa species. Indian Journal of Agricultural Sciences, 72(5): 271-276.
  • 12. Davoudi Pahnekolayi, M., Tehranifar, A., Samiei, L. & Shoor, M. 2016. Optimization of the micro-propagation protocol of two native rose species of Iran (Rosa canina and Rosa beggeriana). Acta Hortic, 1131: 87-96. https://doi.org/10.17660/ActaHortic.2016.1131.12
  • 13. De Klerk, G. 2002. Rooting of microcuttings: theory and practice. In Vitro Cellular & Developmental Biology-Plant, 38(5): 415-422. https://doi.org/10.1079/IVP2002335
  • 14. Deltalab, B., Kaviani, B. & Kulus, D. 2023. In vitro propagation of oil-bearing Rosa damascena using phloroglucinol: A protocol for rapid and high-quality shoot multiplication and rooting. Industrial Crops and Products, 203: 117139. https://doi.org/10.1016/j.indcrop.2023.117139 15. Denysko, I. 2022. Assessment of introduction prospects of David Austin’s roses to the conditions of the Right Bank Forest-Steppe Zone of Ukraine. Journal of Native and Alien Plant Studies, 18: 16-28. [In Ukrainian]. https://doi.org/10.37555/2707-3114.18.2022.269920
  • 16. Dubois, L., Roggemans, J., Soyeurt, G. & De Vries, D. 1988. Comparison of the growth and development of dwarf rose cultivars propagated in vitro and in vivo by softwood cuttings. Scientia Horticulturae, 35: 293-299. https://doi.org/10.1016/0304-4238(88)90123-9
  • 17. Elmongy, M., Zhou, H., Cao, Y., Liu, B. & Xia, Y. 2018. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Scientia Horticulturae, 227: 234-243. https://doi.org/10.1016/j.scienta.2017.09.027
  • 18. Figas, A., Tomaszewska-Sowa, M., Sawilska, A. & Keutgen, A. 2016. Improvement of in vitro propagation and acclimation of Helichrysum arenarium L. Moench. Acta scientiarum Polonorum. Hortorum cultus, 15(4): 17-26.
  • 19. Gawlik, A., Kulpa, D., Gołębiowska, D. & Bejger, R. 2014. Influence of the auxin-like activity of humic acid on bio and microbiometric parameters of Pisum sativum L. by in vitro cultures of pea plants. Journal of Food, Agriculture & Environment, 12(3-4): 209-212.
  • 20. Hameed, N., Shabbir, A., Ali, A. & Bajwa, R. 2006. In vitro micropropagation of disease-free rose (Rosa indica L.). Mycopathology, 4(2): 35-38.
  • 21. Hasnain, A., Naqvi, S., Ayesha, S., Khalid, F., Ellahi, M., Iqbal, S., Hassan, M. Z., Abbas, A., Adamski, R., Markowska, D., Baazeem, A., Mustafa, G., Moustafa, M, Hasan, M. & Abdelhamid, M. 2022. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13: 1009395. https://doi.org/10.3389/fpls.2022.1009395
  • 22. Horn, W. 1992. Micropropagation of rose (Rosa sp. L.). рр. 320-342. In: Bajaj YPS (ed.) Biotechnology in Agriculture and Forestry. Springer, Berlin.
  • 23. Jain, S. & Ishii, K. 2003. Micropropagation of Woody Trees and Fruits. Forestry sciences. Dordrecht Kluwer Academic Publishers, 840 рр. https://doi.org/10.1007/978-94-010-0125-0
  • 24. Kalinin, F., Kushnir, G., Sarnatskaya, V., Lobov, V. 1992. Technology of microclonal propagation of plants. Kiev, Scientific opinion, 488 рр. (In Russian)
  • 25. Kashyap, S., Kapoor, N., Kale, R. 2017. Micropropagation of B. monnieri using humin media inplant tissue culture. Annals of Plant Sciences, 6(5): 1625-1629. https://doi.org/10.21746/aps.2017.05.004
  • 26. Khosh-Khui, M. & Sink, K. 1982. Micropropagation of new and old world rose species. Journal of Horticultural Science, 57(3): 315-319. https://doi.org/10.1080/00221589.1982.11515058
  • 27. Khudolieieva, L., Kutsokon, N., Nesterenko, O., Rashydov, N. & Dugan, O. 2017. In vitro establishing of poplar and willow clones perspective for renewable energetics. Biological sytems, 9(1): 18-22. https://doi.org/10.31861/biosystems2017.01.018
  • 28. Koldar, L. 2008. Features of ontogeny of Cercis siliquastrum L. plants in vitro culture. Autochthous and Alien Plants, 3-4: 53-57. [In Ukrainian].
  • 29. Koldar, L. 2012. The role of phytohormones in the determination of Cerasus serratula Lindl. explants cultivated in vitro. Biosphere Reserve “Askania Nova” Reports, 14: 152-155. [In Ukrainian].
  • 30. Koldar, L., Dzhus, L. & Nebykov, M. 2021. Regeneration capacity of narrow-localized endemic species Dianthus hypanicus Andrz. in vitro. Biotechnologia Acta, 14(3): 39-45. [In Ukrainian]. https://doi.org/10.15407/biotech14.03.039
  • 31. Korotkova, I., Marenych, M., Hanhur, V., Laslo, O., Chetveryk, O. & Liashenko, V. 2021. Weed control and winter wheat crop yield with the application of herbicides, nitrogen fertilizers, and their mixtures with humic growth regulators. Acta Agrobotanica, 74(1): 748. https://doi.org/10.5586/aa.748
  • 32. Kosenko, I., Koldar, L., Denysko, I., Balabak, O., Nebykov, M., Balabak, A. & Balabak, A. 2021. Morphogen development of in vitro cultivated Shrub roses. Ukrainian Journal of Ecology, 11(2): 229-235. https://doi.org/10.15421/2021_104
  • 33. Kotelnytska, A., Тymoshchuk, Т., Kravchuk, M., Sayuk, O. & Nevmerzhytska, O. 2021. Mineral nutrition optimization as a factor affecting blue lupine crop productivity under conditions of global climate warming. Romanian Agricultural Research, 38: 223-230.
  • 34. Kroin, J. 2016. Effective methods to propagate plants from cuttings, by adventitious root formation, grafting & stenting, layering, and improved transplanting using Hortus and Rhizopon plant rooting hormones. Includes a case study of rose propagation. Hortus USA Corp.
  • 35. Kumar, N. & Reddy, M. 2011. In vitro plant propagation: a review. Journal of forest and environmental science, 27(2): 61-72.
  • 36. Kumari, S., Singh, K., Singh, S., Kumar, S. & Sarkhel. S. 2017. Establishment of in vitro propagation protocol for Hybrid Tea rose cv. Raktagandha. Indian Journal of Horticulture, 74(2): 245-250. https://doi.org/10.5958/0974-0112.2017.00050.0
  • 37. Kunakh, V. 2005. Biotechnology of medicinal plants. Genetic, Physiological and biochemical basis. Logos, Kyiv, 730 рр. [In Ukrainian].
  • 38. Marino, G., Cellini, A., Masia, A., Simoni, A., Francioso, O. & Gessa, C. 2009. In vitro treatment with a low molecular weight humic acid can improve growth and mineral uptake of pear plantlets during acclimatization, 565-572 pp. Paper presented at the XI International Symposium on Plant Bioregulators in Fruit Production, 20 September, Bologna-Italy. https://doi.org/10.17660/ActaHortic.2010.884.73
  • 39. Mishchenko, S. & Krivosheeva, L. 2018. In vitro callusogenesis and organogenesis of different Linum usitatissimum L. accessions. Plant Genetic Resources, 23: 49-58. https://doi.org/10.36814/pgr.2018.23.04
  • 40. Molnar, Z., Virag, E. & Ordog, V. 2011. Natural substances in tissue culture media of higher plants. Acta Biologica Szegediensis, 55: 123-127.
  • 41. Moradian, M. & Bagheri, A. 2019. Effect of media composition and plant growth regulators on in vitro regeneration of Rosa canina and Rosa beggeriana. Journal of Plant Research (Iranian Journal of Biology, 32(1): 218-230. https://doi.org/20.1001.1.23832592.1398.32.1.14.7
  • 42. Moroz, O., Denysko, I., Bank, V. 2010. The collection of ground-cover roses in the National Dendrological Park “Sofiyivka” of the National Academy of Sciences of Ukraine. Autochthous and Alien Plants, 6: 106-109. [In Ukrainian].
  • 43. Moroz, O., Denysko, I. & Bank, V. 2012. Collection of Shrub roses in the National Dendrological Park “Sofievka” NAS of Ukraine. Biosphere Reserve “Askania Nova” Reports, 14: 181-185. [In Ukrainian].
  • 44. Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, 15: 473-497.
  • 45. Musavi Ahmadabadi, M., Ahmadi, N. & Dehestani-Ardakani, M. 2023. Putrescine and IBA enhanced the adventitious root formation in Damask rose (Rosa× damascena Mill.) under in vivo and in vitro conditions. Journal of Horticulture and Postharvest Research, 6(4): 383-396. https://doi.org/10.22077/jhpr.2023.6862.1339
  • 46. Nardi, S., Schiavon, M. & Francioso, O. 2021. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8): 2256. https://doi.org/10.3390/molecules26082256
  • 47. Nebykov, M., Koldar, L., Bonyk, Z., Trofimenko, N. & Belemets, N. 2016. Microclonal breeding is whitish-grey meadowsweet (Spiraea cana Waldst. et Kit.). Autochthous and Alien Plants, 12: 160-165. [In Ukrainian]. https://doi.org/10.37555/.12.2016.173394
  • 48. Neri, J., Meléndez-Mori, J., Tejada-Alvarado, J., Vilca-Valqui. N., Huaman-Huaman, E., Oliva, M &, Goñas, M. 2022. An optimized protocol for micropropagation and acclimatization of strawberry (Fragaria× ananassa Duch.) variety ‘Aroma’. Agronomy, 12(4): 968. https://doi.org/10.3390/agronomy12040968
  • 49. Nikbakht, A., Kafi, M., Mirmasoudi, M. & Babalar, M. 2005. Micropropagation of Damask rose (Rosa damascena Mill.) cvs Azaran and Ghamsar. International Journal of Agriculture and Biology, 7: 535-538.
  • 50. Oo, K., Lwin, K. & Khai, A. 2021. In vitro micropropagation of rose (Hybrid Rosa spp.) through plant tissue culture technique. Journal of Scientific and Innovative Research, 10(1): 1-4.
  • 51. Ozel, C. & Arslan, O. 2006. Efficient micropropagation of English shrub rose ‘Heritage’ under in vitro conditions. International Journal of Agriculture and Biology, 8(5): 626-629.
  • 52. Özel, O., Demiray, H., Eroglu, V. & Ecer, C. 2023. Axillary shoot proliferation and regeneration of red rose [Rosa Pisiformis (Christ.) D. Sosn. - an under threat extinction species endemic to Turkey. Bangladesh journal of botany, 52(4): 949-958. https://doi.org/10.3329/bjb.v52i4.70576
  • 53. Podgajeckyj, A., Matskevych, V. & Podhaiets'kyj, A. 2018. Peculiarities of microclonal propagation of plant species. BNAU, Bila Tserkva, 209 рр. [In Ukrainian].
  • 54. Pierik, R. 1997. In vitro culture of higher plants. Springer science & business media, 348 рр.
  • 55. Rezanejad, F., Abdirad, S. & Abarian, M. 2023. Comparison of shoot and root regeneration of miniature potted rose (Rosa x hybrida L.) and Damask rose (R. damascena Mill.) in microculture system. Acta agriculturae Slovenica, 119(1): 1-10. https://doi.org/10.14720/aas.2023.119.1.2380
  • 56. Rose, M., Patti, A., Little, K., Brown, A., Jackson, W. & Cavagnaro, T. 2014. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances in agronomy, 124: 37-89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4
  • 57. Podwyszynska, M. 2003. Rooting of Micropropagated Shoots. 66-76 pp. In: Roberts, A., Debener, T. & Gudin, S. (eds.) Encyclopedia of Rose Science. Academic press.
  • 58. Rugini, E. & Pesce, P. 2006. Genetic improvement of olive. Pomologia Croatica, 12: 43-74. https://doi.org/10.1016/j.biotechadv.2016.03.004
  • 59. Saremi-Rad, A. & Mohammadi, A. 2020. Optimizing the propagation of Damask rose (Rosa damascena Mill.) rootstocks under in vitro conditions. Iranian Journal of Medicinal and Aromatic Plants, 36(3): 509-521. https://doi.org/10.22092/ijmapr.2020.126120.2673
  • 60. Šiško, M. 2011. Micropropagation of roses (Rosa spp.): the effects of different media on in vitro rooting. Agricultura (Slovenia), 8(2): 19-22.
  • 61. Tsygankova, V., Oliynyk, O., Kvasko, O.Y., Pilyo, S. & Klyuchko, S. 2022. Effect of plant growth regulators ivin, methyur and kamethur on the organogenesis of miniature rose (Rosa mini L.) in vitro. International Journal of Medical Biotechnology & Genetics, 1: 1-8.
  • 62. Tytarenko, N. & Tesliuk, N. 2020. Improvement of the processes of microclonal reproduction of blackberry Rubus Caesius L.var. Thornfree. Microbiology&Biotechnology, 2: 72-84. https://doi.org/10.18524/2307-4663.2020.2(49).209806
  • 63. Vedmid, M., Yatsenko, S. & Popov, O. 2002. Application of plant growth regulators in the process of seedlings growing and in the creation of planted forest. Scientific bulletin of UNFU, 12(4): 240-245.
  • 64. Wu, Y., Xia, Y., Zhang, J., Du, F., Zhang, L. & Zhou, H. 2016. Low humic acids promote in vitro lily bulblet enlargement by enhancing roots growth and carbohydrate metabolism. Journal of Zhejiang University. Science. 17(11): 892. https://doi.org/10.1631/jzus.B1600231
  • 65. Yegorova, N., Stavtzeva, I., Tevfik, A., Tikhonov, V. & Sushinskaya, N. 2023. Effect of chitosan on rose and lavender micropropagation in vitro. Paper presented at the AIP Conference Proceedings 2931(1). AIP Publishing. https://doi.org/10.1063/5.0180661
  • 66. Zapolsky, Y. 2021. Efficiency of reproduction of honeysuckle (Lonicera caerulea var. Edulis Turcz. ex Herder). Taurida Scientific Herald. Series: Rural Sciences, 117: 44-53. https://doi.org/10.32851/2226-0099.2021.117.7
Year 2024, , 187 - 196, 15.10.2024
https://doi.org/10.23902/trkjnat.1464147

Abstract

Çalı güllerinin üreme özelliklerinin incelenmesi ve eksplant kök oluşumunun hormonal kontrolünün kullanılan besleyici ortamın fitohormon konsantrasyonuna bağlı olduğunun tanımlanması önemlidir ve hem bilimsel hem de pratik açıdan üzerinde durulan konulardır. Bu çalışmada, büyüme düzenleyicileri içeren besin ortamı üzerinde in vitro olarak yetiştiri-len çalı gülü kültivarlarının (Gärtnerfreude, Lavender Dream, Pomponella, Red Cascade, Sommerabend) eksplantlarında kök oluşumunun hormonal belirlenmesine yönelik deneme-lerin sonuçları sunulmuştur. 0,2-1,0 mg/l a-naftilasetik asit (a-NAA) ilavesiyle modifiye edilen besin ortamlarından en etkilisinin, 0,5 mg/l a-NAA içerikli, sukroz oranı %2’ye kadar düşürülmüş ortam olduğu tespit edilmiştir. Bu ortamda, çalışılan kültivarlar için kök oluşu-mu sıklığı ortalama %61,2 olarak belirlenmiştir. Kullanılan kültivarlardaki kök oluşumunun in vitro etkinliğindeki hormonal katkının kültivarların genotiplerine bağlı olduğu belirlen-miştir: Lavender Dream kültivarı (%66,0) ve Sommerabend kültivarı (%67,0) en yüksekkök oluşumu yeteneği sergilemişlerdir. Bir büyüme düzenleyicisi olan Humifield'in 0,5 mg/l α-NAA ile kombinasyon halinde kullanılması, incelenen gül kültvarlarında köklenme oranının %70,0-86,0'a kadar artmasına katkıda bulunmuştur.

References

  • 1. Afrin, S., Rahman, M., Khalekuzzaman, M., Hasan, M., Fahim, A. & Alam, M. 2022. Study on in vitro micropropagation of Rosa sp. Bangladesh Journal of Agriculture, 47(1): 66-74. https://doi.org/10.3329/bjagri.v47i1.60593
  • 2. Al-Mayahi, A. 2021. The effect of humic acid (HA) and zinc oxide nanoparticles (ZnO-NPS) on in vitro regeneration of date palm (Phoenix dactylifera L.) cv. Quntar. Plant Cell, Tissue and Organ Culture (PCTOC), 145: 445-456.
  • 3. Arnold, N., Binns, M., Cloutier, C., Barthakur, N. & Pellerin, R. 1995. Auxins, salt concentrations and their interactions during in vitro rooting of winter-hardy and hybrid tea roses. Horticultural Science, 30(7): 1436-1440.
  • 4. Attia, A., Dessoky, E. & El-Tarras, A. 2012. In vitro propagation of Rosa hybrida L. cv. Al-Taif Rose plant. African Journal of Biotechnology, 11(48): 10888-10893. https://doi.org/10.5897/AJB12.781
  • 5. Baig, M., Hafiz, I., Hussain, A., Ahmad, T. & Abbasi, N. 2011. An efficient protocol for in vitro propagation of Rosa gruss an teplitz and Rosa centifolia. African Journal of Biotechnology, 10(22): 4564-4573. https://doi.org/10.5897/AJB10.2051
  • 6. Bidabadi, S. & Jain, S. 2020. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants, 9(6): 702.
  • 7. Carelli, B. & Echeverrigaray, S. 2002. An improved system for the in vitro propagation of rose cultivars. Scientia Horticulturae, 92: 69-74. https://doi.org/10.1016/S0304-4238(01)00280-1
  • 8. Chauhan, U., Singh, A., Godani, D., Handa, S., Gupta, P., Patel, S. & Joshi, P. 2018. Some natural extracts from plants as lowcost alternatives for synthetic PGRs in rose micropropagation. Journal of Applied Horticulturae, 20: 103-111. https://doi.org/10.37855/jah.2018.v20i02.19
  • 9. Chawla, H. 2011. Introduction to plant biotechnology. CRC Press, 760 рр.
  • 10. Chen, Y. & Aviad, T. 1990. Effects of humic substances on plant growth. рр. 161-186. In: Maccarthy, P., Clapp, C.E., Malcolm, R.L. & Bloom, P.R. (eds). Humic substances in soil and crop sciences: Selected readings. Madison: Soil Science Society of America. https://doi.org/10.2136/1990.humicsubstances.c7
  • 11. Datta, S., Chakraborty, D., Deepti D., Mandal, A. & Saxena, M. 2002. In vitro petal culture and callus formation in Rosa species. Indian Journal of Agricultural Sciences, 72(5): 271-276.
  • 12. Davoudi Pahnekolayi, M., Tehranifar, A., Samiei, L. & Shoor, M. 2016. Optimization of the micro-propagation protocol of two native rose species of Iran (Rosa canina and Rosa beggeriana). Acta Hortic, 1131: 87-96. https://doi.org/10.17660/ActaHortic.2016.1131.12
  • 13. De Klerk, G. 2002. Rooting of microcuttings: theory and practice. In Vitro Cellular & Developmental Biology-Plant, 38(5): 415-422. https://doi.org/10.1079/IVP2002335
  • 14. Deltalab, B., Kaviani, B. & Kulus, D. 2023. In vitro propagation of oil-bearing Rosa damascena using phloroglucinol: A protocol for rapid and high-quality shoot multiplication and rooting. Industrial Crops and Products, 203: 117139. https://doi.org/10.1016/j.indcrop.2023.117139 15. Denysko, I. 2022. Assessment of introduction prospects of David Austin’s roses to the conditions of the Right Bank Forest-Steppe Zone of Ukraine. Journal of Native and Alien Plant Studies, 18: 16-28. [In Ukrainian]. https://doi.org/10.37555/2707-3114.18.2022.269920
  • 16. Dubois, L., Roggemans, J., Soyeurt, G. & De Vries, D. 1988. Comparison of the growth and development of dwarf rose cultivars propagated in vitro and in vivo by softwood cuttings. Scientia Horticulturae, 35: 293-299. https://doi.org/10.1016/0304-4238(88)90123-9
  • 17. Elmongy, M., Zhou, H., Cao, Y., Liu, B. & Xia, Y. 2018. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Scientia Horticulturae, 227: 234-243. https://doi.org/10.1016/j.scienta.2017.09.027
  • 18. Figas, A., Tomaszewska-Sowa, M., Sawilska, A. & Keutgen, A. 2016. Improvement of in vitro propagation and acclimation of Helichrysum arenarium L. Moench. Acta scientiarum Polonorum. Hortorum cultus, 15(4): 17-26.
  • 19. Gawlik, A., Kulpa, D., Gołębiowska, D. & Bejger, R. 2014. Influence of the auxin-like activity of humic acid on bio and microbiometric parameters of Pisum sativum L. by in vitro cultures of pea plants. Journal of Food, Agriculture & Environment, 12(3-4): 209-212.
  • 20. Hameed, N., Shabbir, A., Ali, A. & Bajwa, R. 2006. In vitro micropropagation of disease-free rose (Rosa indica L.). Mycopathology, 4(2): 35-38.
  • 21. Hasnain, A., Naqvi, S., Ayesha, S., Khalid, F., Ellahi, M., Iqbal, S., Hassan, M. Z., Abbas, A., Adamski, R., Markowska, D., Baazeem, A., Mustafa, G., Moustafa, M, Hasan, M. & Abdelhamid, M. 2022. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13: 1009395. https://doi.org/10.3389/fpls.2022.1009395
  • 22. Horn, W. 1992. Micropropagation of rose (Rosa sp. L.). рр. 320-342. In: Bajaj YPS (ed.) Biotechnology in Agriculture and Forestry. Springer, Berlin.
  • 23. Jain, S. & Ishii, K. 2003. Micropropagation of Woody Trees and Fruits. Forestry sciences. Dordrecht Kluwer Academic Publishers, 840 рр. https://doi.org/10.1007/978-94-010-0125-0
  • 24. Kalinin, F., Kushnir, G., Sarnatskaya, V., Lobov, V. 1992. Technology of microclonal propagation of plants. Kiev, Scientific opinion, 488 рр. (In Russian)
  • 25. Kashyap, S., Kapoor, N., Kale, R. 2017. Micropropagation of B. monnieri using humin media inplant tissue culture. Annals of Plant Sciences, 6(5): 1625-1629. https://doi.org/10.21746/aps.2017.05.004
  • 26. Khosh-Khui, M. & Sink, K. 1982. Micropropagation of new and old world rose species. Journal of Horticultural Science, 57(3): 315-319. https://doi.org/10.1080/00221589.1982.11515058
  • 27. Khudolieieva, L., Kutsokon, N., Nesterenko, O., Rashydov, N. & Dugan, O. 2017. In vitro establishing of poplar and willow clones perspective for renewable energetics. Biological sytems, 9(1): 18-22. https://doi.org/10.31861/biosystems2017.01.018
  • 28. Koldar, L. 2008. Features of ontogeny of Cercis siliquastrum L. plants in vitro culture. Autochthous and Alien Plants, 3-4: 53-57. [In Ukrainian].
  • 29. Koldar, L. 2012. The role of phytohormones in the determination of Cerasus serratula Lindl. explants cultivated in vitro. Biosphere Reserve “Askania Nova” Reports, 14: 152-155. [In Ukrainian].
  • 30. Koldar, L., Dzhus, L. & Nebykov, M. 2021. Regeneration capacity of narrow-localized endemic species Dianthus hypanicus Andrz. in vitro. Biotechnologia Acta, 14(3): 39-45. [In Ukrainian]. https://doi.org/10.15407/biotech14.03.039
  • 31. Korotkova, I., Marenych, M., Hanhur, V., Laslo, O., Chetveryk, O. & Liashenko, V. 2021. Weed control and winter wheat crop yield with the application of herbicides, nitrogen fertilizers, and their mixtures with humic growth regulators. Acta Agrobotanica, 74(1): 748. https://doi.org/10.5586/aa.748
  • 32. Kosenko, I., Koldar, L., Denysko, I., Balabak, O., Nebykov, M., Balabak, A. & Balabak, A. 2021. Morphogen development of in vitro cultivated Shrub roses. Ukrainian Journal of Ecology, 11(2): 229-235. https://doi.org/10.15421/2021_104
  • 33. Kotelnytska, A., Тymoshchuk, Т., Kravchuk, M., Sayuk, O. & Nevmerzhytska, O. 2021. Mineral nutrition optimization as a factor affecting blue lupine crop productivity under conditions of global climate warming. Romanian Agricultural Research, 38: 223-230.
  • 34. Kroin, J. 2016. Effective methods to propagate plants from cuttings, by adventitious root formation, grafting & stenting, layering, and improved transplanting using Hortus and Rhizopon plant rooting hormones. Includes a case study of rose propagation. Hortus USA Corp.
  • 35. Kumar, N. & Reddy, M. 2011. In vitro plant propagation: a review. Journal of forest and environmental science, 27(2): 61-72.
  • 36. Kumari, S., Singh, K., Singh, S., Kumar, S. & Sarkhel. S. 2017. Establishment of in vitro propagation protocol for Hybrid Tea rose cv. Raktagandha. Indian Journal of Horticulture, 74(2): 245-250. https://doi.org/10.5958/0974-0112.2017.00050.0
  • 37. Kunakh, V. 2005. Biotechnology of medicinal plants. Genetic, Physiological and biochemical basis. Logos, Kyiv, 730 рр. [In Ukrainian].
  • 38. Marino, G., Cellini, A., Masia, A., Simoni, A., Francioso, O. & Gessa, C. 2009. In vitro treatment with a low molecular weight humic acid can improve growth and mineral uptake of pear plantlets during acclimatization, 565-572 pp. Paper presented at the XI International Symposium on Plant Bioregulators in Fruit Production, 20 September, Bologna-Italy. https://doi.org/10.17660/ActaHortic.2010.884.73
  • 39. Mishchenko, S. & Krivosheeva, L. 2018. In vitro callusogenesis and organogenesis of different Linum usitatissimum L. accessions. Plant Genetic Resources, 23: 49-58. https://doi.org/10.36814/pgr.2018.23.04
  • 40. Molnar, Z., Virag, E. & Ordog, V. 2011. Natural substances in tissue culture media of higher plants. Acta Biologica Szegediensis, 55: 123-127.
  • 41. Moradian, M. & Bagheri, A. 2019. Effect of media composition and plant growth regulators on in vitro regeneration of Rosa canina and Rosa beggeriana. Journal of Plant Research (Iranian Journal of Biology, 32(1): 218-230. https://doi.org/20.1001.1.23832592.1398.32.1.14.7
  • 42. Moroz, O., Denysko, I., Bank, V. 2010. The collection of ground-cover roses in the National Dendrological Park “Sofiyivka” of the National Academy of Sciences of Ukraine. Autochthous and Alien Plants, 6: 106-109. [In Ukrainian].
  • 43. Moroz, O., Denysko, I. & Bank, V. 2012. Collection of Shrub roses in the National Dendrological Park “Sofievka” NAS of Ukraine. Biosphere Reserve “Askania Nova” Reports, 14: 181-185. [In Ukrainian].
  • 44. Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, 15: 473-497.
  • 45. Musavi Ahmadabadi, M., Ahmadi, N. & Dehestani-Ardakani, M. 2023. Putrescine and IBA enhanced the adventitious root formation in Damask rose (Rosa× damascena Mill.) under in vivo and in vitro conditions. Journal of Horticulture and Postharvest Research, 6(4): 383-396. https://doi.org/10.22077/jhpr.2023.6862.1339
  • 46. Nardi, S., Schiavon, M. & Francioso, O. 2021. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8): 2256. https://doi.org/10.3390/molecules26082256
  • 47. Nebykov, M., Koldar, L., Bonyk, Z., Trofimenko, N. & Belemets, N. 2016. Microclonal breeding is whitish-grey meadowsweet (Spiraea cana Waldst. et Kit.). Autochthous and Alien Plants, 12: 160-165. [In Ukrainian]. https://doi.org/10.37555/.12.2016.173394
  • 48. Neri, J., Meléndez-Mori, J., Tejada-Alvarado, J., Vilca-Valqui. N., Huaman-Huaman, E., Oliva, M &, Goñas, M. 2022. An optimized protocol for micropropagation and acclimatization of strawberry (Fragaria× ananassa Duch.) variety ‘Aroma’. Agronomy, 12(4): 968. https://doi.org/10.3390/agronomy12040968
  • 49. Nikbakht, A., Kafi, M., Mirmasoudi, M. & Babalar, M. 2005. Micropropagation of Damask rose (Rosa damascena Mill.) cvs Azaran and Ghamsar. International Journal of Agriculture and Biology, 7: 535-538.
  • 50. Oo, K., Lwin, K. & Khai, A. 2021. In vitro micropropagation of rose (Hybrid Rosa spp.) through plant tissue culture technique. Journal of Scientific and Innovative Research, 10(1): 1-4.
  • 51. Ozel, C. & Arslan, O. 2006. Efficient micropropagation of English shrub rose ‘Heritage’ under in vitro conditions. International Journal of Agriculture and Biology, 8(5): 626-629.
  • 52. Özel, O., Demiray, H., Eroglu, V. & Ecer, C. 2023. Axillary shoot proliferation and regeneration of red rose [Rosa Pisiformis (Christ.) D. Sosn. - an under threat extinction species endemic to Turkey. Bangladesh journal of botany, 52(4): 949-958. https://doi.org/10.3329/bjb.v52i4.70576
  • 53. Podgajeckyj, A., Matskevych, V. & Podhaiets'kyj, A. 2018. Peculiarities of microclonal propagation of plant species. BNAU, Bila Tserkva, 209 рр. [In Ukrainian].
  • 54. Pierik, R. 1997. In vitro culture of higher plants. Springer science & business media, 348 рр.
  • 55. Rezanejad, F., Abdirad, S. & Abarian, M. 2023. Comparison of shoot and root regeneration of miniature potted rose (Rosa x hybrida L.) and Damask rose (R. damascena Mill.) in microculture system. Acta agriculturae Slovenica, 119(1): 1-10. https://doi.org/10.14720/aas.2023.119.1.2380
  • 56. Rose, M., Patti, A., Little, K., Brown, A., Jackson, W. & Cavagnaro, T. 2014. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances in agronomy, 124: 37-89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4
  • 57. Podwyszynska, M. 2003. Rooting of Micropropagated Shoots. 66-76 pp. In: Roberts, A., Debener, T. & Gudin, S. (eds.) Encyclopedia of Rose Science. Academic press.
  • 58. Rugini, E. & Pesce, P. 2006. Genetic improvement of olive. Pomologia Croatica, 12: 43-74. https://doi.org/10.1016/j.biotechadv.2016.03.004
  • 59. Saremi-Rad, A. & Mohammadi, A. 2020. Optimizing the propagation of Damask rose (Rosa damascena Mill.) rootstocks under in vitro conditions. Iranian Journal of Medicinal and Aromatic Plants, 36(3): 509-521. https://doi.org/10.22092/ijmapr.2020.126120.2673
  • 60. Šiško, M. 2011. Micropropagation of roses (Rosa spp.): the effects of different media on in vitro rooting. Agricultura (Slovenia), 8(2): 19-22.
  • 61. Tsygankova, V., Oliynyk, O., Kvasko, O.Y., Pilyo, S. & Klyuchko, S. 2022. Effect of plant growth regulators ivin, methyur and kamethur on the organogenesis of miniature rose (Rosa mini L.) in vitro. International Journal of Medical Biotechnology & Genetics, 1: 1-8.
  • 62. Tytarenko, N. & Tesliuk, N. 2020. Improvement of the processes of microclonal reproduction of blackberry Rubus Caesius L.var. Thornfree. Microbiology&Biotechnology, 2: 72-84. https://doi.org/10.18524/2307-4663.2020.2(49).209806
  • 63. Vedmid, M., Yatsenko, S. & Popov, O. 2002. Application of plant growth regulators in the process of seedlings growing and in the creation of planted forest. Scientific bulletin of UNFU, 12(4): 240-245.
  • 64. Wu, Y., Xia, Y., Zhang, J., Du, F., Zhang, L. & Zhou, H. 2016. Low humic acids promote in vitro lily bulblet enlargement by enhancing roots growth and carbohydrate metabolism. Journal of Zhejiang University. Science. 17(11): 892. https://doi.org/10.1631/jzus.B1600231
  • 65. Yegorova, N., Stavtzeva, I., Tevfik, A., Tikhonov, V. & Sushinskaya, N. 2023. Effect of chitosan on rose and lavender micropropagation in vitro. Paper presented at the AIP Conference Proceedings 2931(1). AIP Publishing. https://doi.org/10.1063/5.0180661
  • 66. Zapolsky, Y. 2021. Efficiency of reproduction of honeysuckle (Lonicera caerulea var. Edulis Turcz. ex Herder). Taurida Scientific Herald. Series: Rural Sciences, 117: 44-53. https://doi.org/10.32851/2226-0099.2021.117.7
There are 65 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Research Article/Araştırma Makalesi
Authors

Larysa Koldar This is me 0000-0002-6756-4172

Iryna Denysko This is me 0000-0002-2385-9331

Alla Konopelko 0000-0002-5214-6170

Yevhen Mazur This is me 0009-0009-8045-0768

Early Pub Date October 11, 2024
Publication Date October 15, 2024
Submission Date April 5, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2024

Cite

APA Koldar, L., Denysko, I., Konopelko, A., Mazur, Y. (2024). Rhizogenesis in Shrub rose cultivated in vitro. Trakya University Journal of Natural Sciences, 25(2), 187-196. https://doi.org/10.23902/trkjnat.1464147
AMA Koldar L, Denysko I, Konopelko A, Mazur Y. Rhizogenesis in Shrub rose cultivated in vitro. Trakya Univ J Nat Sci. October 2024;25(2):187-196. doi:10.23902/trkjnat.1464147
Chicago Koldar, Larysa, Iryna Denysko, Alla Konopelko, and Yevhen Mazur. “Rhizogenesis in Shrub Rose Cultivated in Vitro”. Trakya University Journal of Natural Sciences 25, no. 2 (October 2024): 187-96. https://doi.org/10.23902/trkjnat.1464147.
EndNote Koldar L, Denysko I, Konopelko A, Mazur Y (October 1, 2024) Rhizogenesis in Shrub rose cultivated in vitro. Trakya University Journal of Natural Sciences 25 2 187–196.
IEEE L. Koldar, I. Denysko, A. Konopelko, and Y. Mazur, “Rhizogenesis in Shrub rose cultivated in vitro”, Trakya Univ J Nat Sci, vol. 25, no. 2, pp. 187–196, 2024, doi: 10.23902/trkjnat.1464147.
ISNAD Koldar, Larysa et al. “Rhizogenesis in Shrub Rose Cultivated in Vitro”. Trakya University Journal of Natural Sciences 25/2 (October 2024), 187-196. https://doi.org/10.23902/trkjnat.1464147.
JAMA Koldar L, Denysko I, Konopelko A, Mazur Y. Rhizogenesis in Shrub rose cultivated in vitro. Trakya Univ J Nat Sci. 2024;25:187–196.
MLA Koldar, Larysa et al. “Rhizogenesis in Shrub Rose Cultivated in Vitro”. Trakya University Journal of Natural Sciences, vol. 25, no. 2, 2024, pp. 187-96, doi:10.23902/trkjnat.1464147.
Vancouver Koldar L, Denysko I, Konopelko A, Mazur Y. Rhizogenesis in Shrub rose cultivated in vitro. Trakya Univ J Nat Sci. 2024;25(2):187-96.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.