Araştırma Makalesi
BibTex RIS Kaynak Göster

ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES

Yıl 2020, Cilt: 21 Sayı: 1, 1 - 11, 15.04.2020
https://doi.org/10.23902/trkjnat.609487

Öz

There are eight centers of origin for cultivated plants and
Turkey is located in the interception of two of these centers, the Near East
and the Mediterranean. Therefore, Turkey is known to be the gene center for
diversification
and dispersion of such main cereal crops such as wheat, barley, rye and oat.
This study was performed to determine glutenin gene allele frequencies and Glu-1 quality scores of 116 local wheat
landraces of Turkish bread wheat. SDS-PAGE and PCR were used to identify
glutenin gene alleles. The results showed that the studied Turkish local wheat
landraces contained a total of 19 different subunits (3 subunits in Glu-A1, 11 in Glu-B1 and 5 in Glu-D1)
with 50 different combinations. The highest and the lowest allelic combinations
were determined in East Anatolia and the Aegean regions, respectively. Glu-A1c (65.11%), Glu-B1b (53.60%) and Glu-D1a
(58.30%) were the most frequent alleles. The Glu-1 quality score was found to be 6.07 for the studied genotypes.
Among the regions, the highest (7.18) and the lowest (4.80) mean Glu-1 scores were detected in Marmara
and Southeastern Anatolia regions, respectively. 4 accessions (TR32846-6, TR36948-1, TR45105 and TR63536) were reported
to have the highest Glu-1 quality score as 10. 6 genotypes (TR45398-4,
TR48025-3, TR33264-6, TR393-5, TR52021-3 and TR45094) had the quality score of
9. Including more new landraces may contribute to discover new Glu-1
alleles.

Destekleyen Kurum

Scientific Research Projects Department of Erciyes University

Proje Numarası

FBD-3666

Teşekkür

We are indebted to Prof. Dr Behzad Ghaderi Sohi (Professor in English Language and Literature Department of Erciyes University) for editing the English of the manuscript.

Kaynakça

  • 1. Ahmad, M. 2000. Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theoretical and Applied Genetics, 101: 892-896.
  • 2. Atanasova, D., Tsenov, N., Todorov, I. & Ivanova, I. 2009. Glutenin composition of winter wheat varieties bred in Dobrudzha agricultural institute. Bulgarian Journal of Agricultural Science, 15: 9-19.
  • 3. Autran, J.C. & Feillet, P. 1985. Genetic and technological basis of protein quality for durum wheat in pasta. Proc. Protein Evaluation in Cereals and Legumes, Thessaloniki 23-24 October, 1985, Commission of the European Communities, Report EUR 10404 EN, 59-71.
  • 4. Bietz, J.A., Shepherd, K.W. & Wall, J.S. 1975. Single-kernel analysis of glutenin: Use in wheat genetics and breeding. Cereal Chemistry, 52: 513-532.
  • 5. Branlard, G., Autran, J.C. & Monneveux, P. 1989. High molecular weight glutenin subunits in durum wheat (Triticum durum). Theoretical and Applied Genetics, 78: 353-358.
  • 6. Caballero, L., Martin, M.A. & Alvarez, J.B. 2009. Genetic diversity for seed storage proteins in Lebanon and Turkey populations of wild diploid wheat (Triticum urartu Thum. Ex Gandil.). Genetic Resources and Crop Evolution, 56: 1117-1124.
  • 7. Carrillo, J.M., Vazquez, J.F. & Orellana, J. 1990. Relationship between gluten strength and glutenin proteins in durum wheat cultivars. Plant Breeding, 104: 325-333.
  • 8. De Bustos, A. & Jouve, N. 2003. Characterization and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theoretical and Applied Genetics, 107: 74-83.
  • 9. Dubcovsky, J. & Dvorak, J. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316:1862-1866.
  • 10. Dvorak, J., Luo, M.C., Yang, Z.L. & Zhang, H.B. 1998. The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97: 657-670.
  • 11. Feldman, M. 2001. Origin of cultivated wheat. In: (Bonjean AP, Angus WJ, eds. The world wheat book: a history of wheat breeding. Paris, France: Lavoisier Publishing, 3-56).
  • 12. Gao, X., Appelbee, M.J., Mekuria, G.T., Chalmers, K.J. & Mather, D.E. 2012. A second overexpression allele at the Glu-B1 high-molecular-weight glutenin locus of wheat: sequence characterization and functional effects. Theoretical and Applied Genetics, 124: 333-343.
  • 13. Gianibelli, M.C., Echaide, M., Larroque, O.R., Carrillo, J.M. & Dubcovsky, J. 2002. Biochemical and molecular characterization of Glu-1 loci in Argentinean wheat cultivars. Euphytica, 128: 61-73.
  • 14. Grain Sector Report, 2013. (Web page: http://www.tmo.gov.tr/upload/document/raporlar/hububatsektorraporu.pdf) (Date accessed: 01.09.2019).
  • 15. Gregova, E., Hermuth, J., Kraic, J. & Dotlacil, L. 1999. Protein heterogeneity in European wheat landraces and obsolete cultivars. Additional information. Genetic Resources and Crop Evolution, 46: 521-528.
  • 16. Gregova, E., Hermuth, J., Kraic, J. & Dotlacil, L. 2006. Protein heterogeneity in European wheat landraces and obsolete cultivars. Additional information II. Genetic Resources and Crop Evolution, 53: 867-871.
  • 17. Gupta, R.B., Bekes, F. & Wrigley, C.W. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats: Correlation study. Cereal Chemistry, 68: 328-333.
  • 18. Horvat, D., Drezner, G., Sudar, R., Simic, G., Dvojkovic, K., Spanic, V. & Magdic, D. 2015. Distribution of wheat protein components under different genetic background and environment. Turkish Journal of Field Crops, 20(2): 150-154.
  • 19. Jiang, Q.T., Wei, Y.M., Wang, J.R., Yan, Z.H. & Zheng, Y.L. 2006. Isolation and Sequence Analysis of HMW Glutenin Subunit 7Dy70.7 Ecoding Gene from Xinjiang Wheat (Triticum petropavlovskyi Udacz. et Migusch). Agricultural Science China, 5(2): 81-89.
  • 20. Juhász, A., Larroque, O.R., Tamas, L., Hsam, S., Zeller, F.J., Bekes, F. & Bedo, Z. 2003. Bankuti 1201-an old Hungarian wheat variety with special storage protein composition. Theoretical and Applied Genetics, 107: 697-704.
  • 21. Kaplan, M., Akar, T., Kamalak, A. & Bulut, S. 2014. Use of Diploid and Tetraploid Hulled Wheat Genotypes for Animal Feeding. Turkish Journal of Agriculture and Forestry, 38: 838-846.
  • 22. Lafiandra, D., Tucci, G.F., Pavoni, A. & Turchetta, T. 1997. PCR analysis of x and y-type genes present at the complex Glu-A1 locus in durum and bread wheat. Theoretical and Applied Genetics, 94: 235-240.
  • 23. Lagudah, E.S., Flood, R.G. & Halloran, G.M. 1987. Variation in high molecular weight glutenin subunits in landraces of hexaploid wheat from Afghanistan. Euphytica, 36: 3-9.
  • 24. Lawrence, G.J. & Shepherd, K.W. 1980. Variation in glutenin protein subunits of wheat. Australian Journal of Biological Sciences, 33: 221-233.
  • 25. Li, F., Jiang, X., Wei, Y., Xia, G. & Liu, S. 2012. Characterization of a novel type of HMW subunit of glutenin from Australopyrum retrofractum. Gene, 492: 65-70.
  • 26. Liu, Y., Xiong, Z.Y., He, Y.G., Shewry, P.R. & He, G.Y. 2007. Genetic diversity of HMW-GS in Chinese common wheat (Triticum aestivum L.) landraces from Hubei province. Genetic Resources and Crop Evolution, 54: 865-874.
  • 27. Lukow, O.M., Payne, P.I. & Tkachuk, R. 1989. The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread making quality. Journal of the Science of Food and Agriculture, 46: 451-460.
  • 28. Ma, W., Zhang, W. & Gale, K.R. 2003. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 134: 51-60.
  • 29. MacRitchie, F., duCros, D.L. & Wrigley, C.W. 1990. Flour polypeptides related to wheat quality. Pp. 79-145, in: (MacRitchie, F. (Editor), Advances in Cereal Science and Technology, Vol. 10. AACC, St Paul, Minnesota, USA).
  • 30. Margiotta, B., Colaprico, G. & Lafiandra, D. 1987. Variation for protein components associated with quality in durum wheat lines and varieties, 314-330. Proc. 3rd Int. Workshop Gluten Proteins, 6-9 May, Budapest, Hungary.
  • 31. McCarthy, P.L., Hansen, J.L., Zemetra, R.S. & Berger, P.H. 2002. Rapid identification of transformed wheat using a half-seed PCR assay. BioTechniques, 32: 560-564.
  • 32. McIntosh, R.A., Hart, G.E. & Gale, M.D. 1994. Catalogue of gene symbols for wheat (supplement). Annual Wheat Newsletter, 40: 362-375.
  • 33. Mishra, A., Bansal, S., Tomar, A., Khanna, V.K. & Gang, G.K. 2009. PCR based isolation and cloning of HMW glutenin gene(s) from wheat (T. aestivum var. PBW343) and its fusion with kafirin gene promoter of sorghum. Acta Biologica Szegediensis, 53(1): 9-15.
  • 34. Mondal, S., Tilley, M., Alviola, J.N., Waniska, R.D., Bean, S.R., Glover, K.D. & Hays, D.B. 2008. Use of near-isogenic wheat lines to determine the glutenin composition and functionality requirements for flour tortillas. Journal of Agricultural and Food Chemistry, 56: 179-184.
  • 35. Morgunov, A.I., Pena, R.J., Crossa, J. & Rajaram, S. 1993. Worldwide distribution of the Glu-1 alleles in bread wheat. Journal of Genetics and Breeding, 47: 53-60.
  • 36. Nakamura, H. 2000. The relationship between high-molecular weight glutenin subunit composition and the quality of Japanese hexaploid wheat lines. Journal of Agricultural and Food Chemistry, 48(7): 2648-2652.
  • 37. Nakamura, H., Inazu, A. & Hirano, H. 1999. Allelic variation in high-molecular-weight glutenin subunit Loci of Glu-1 in Japanese common wheats. Euphytica, 106: 131-138. 38. Nei, M. 1972. Genetic distances between populations. The American Naturalist, 106: 283-292. 39. Nucia, A., Okoń, S. & Tomczyńska-Mleko, M. 2019. Characterization of HMW glutenin subunits in European spring common wheat (Triticum aestivum L.) Genetic Resource and Crop Evolution, 66: 579-588. 40. Orth, R.A. & Bushuk, W. 1974. Studies of glutenin. VI. Chromosomal location for subunits of glutenin of common wheat. Cereal Chemistry, 51: 118-126.
  • 41. Payne, P.I. 1987a. Genetics of wheat storage protein and the effect of allelic variation on breadmaking quality. Annual Review of Plant Physiology, 38: 141-153.
  • 42. Payne, P.I. 1987b. The genetical basis of bread-making quality in wheat, In: Aspects of Applied Biology. Cereal Quality Association of Applied Biologists. 15: 79-90.
  • 43. Payne, P.I. & Lawrence, G.J. 1983. Catalogue of alleles for the complex gene loci GluA1, GluB1, GluD1, which code for the highmolecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Communications, 11: 29-35.
  • 44. Payne, P.I., Corfield, K.G. & Blackman, J.A. 1979. Identification of a high molecular weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. Theoretical and Applied Genetics, 55: 153-159.
  • 45. Payne, P.I., Holt, L.M., Jackson, E.A. & Law, C.N. 1984. Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding. Philosophical Transactions of the Royal Society B, 304: 359-371.
  • 46. Payne, P.I., Holt, L.M. & Law, C.N. 1981. Structural and genetical studies of the high molecular subunits of wheat glutenin. I. Allelic variation in subunits amongst varieties of wheat. Theoretical and Applied Genetics, 60: 229-236.
  • 47. Payne, P.I., Holt, L.M. & Lawrence, G.D. 1983. Detection of a novel high-molecular-weight subunit of glutenin in some Japanese hexaploid wheats. Journal of Cereal Science, 1: 3-8.
  • 48. Payne, P.I., Nightingale, M.A., Krattiger, A.F. & Holt, L.M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. Journal of the Science of Food and Agriculture, 40: 51-65.
  • 49. Pogna, N.E., Autran, J.C., Mellini, F., Lafiandra, D. & Feillet, P. 1990. Chromosome 1B encoded gliadins and glutenin subunits in durum wheat: Genetics and relationship to gluten strength. Journal of Cereal Science, 11: 15-34.
  • 50. Porceddu, E., Ceoloni, C., Lafiandra, D., Tanzarella, O.A. & Mugnozza, G.T.S. 1988. Genetic resources and plant breeding: problems and prospects, 7-22. Proc. 7th Int. Wheat Genetics Symposium, 13-19 July, Cambridge-UK.
  • 51. Radovanovic, N. & Cloutier, S. 2003. Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Molecular Breeding, 12: 51-59.
  • 52. Salmanowicz, B.P. & Dylewicz, M. 2007. Identification and characterization of high-molecular-weight glutenin genes in Polish triticale cultivars by PCR-based DNA markers. Journal of Applied Genetics, 48(4): 347-357.
  • 53. Shewry, P.R., Halford, N.G. & Lafiandra, D. 2003. Genetics of wheat gluten proteins. Advances in Genetics, 49: 111-184.
  • 54. Sultana, T., Ghafoor, A. & Ashraf, M. 2007. Genetic variability in bread wheat (Triticum aestivum L.) of Pakistan based on polymorphism for high molecular weight glutenin subunits. Genetic Resources and Crop Evolution, 54: 1159-1165.
  • 55. Temizgul, R., Akbulut, M. & Lafiandra, D. 2018. Genetic diversity of high-molecular-weight glutenin subunit compositions in bread wheat landraces originated from Turkey. Plant Genetic Resources, 16(1): 28-38.
  • 56. Terasawa, Y., Takara, K., Hirano, H., Kato, K., Kawahara, T., Saskuma, T. & Sasanuma, T. 2010. Genetic variation of high-molecular-weight glutenin subunit composition in Asian wheat. Genetic Resources and Crop Evolution, 58: 283-289.
  • 57. Terasawa, Y., Kawahara, T., Sasakuma, T. & Sasanuma, T. 2009. Evaluation of the genetic diversity of an Afghan wheat collection based on morphological variation, HMW glutenin subunit polymorphisms, and AFLP. Breeding Science, 59: 361-371.
  • 58. Tok, D., Senturk-Akfirat, F., Sevinç, D., Aydin, Y. & Altinkurt-Uncuoglu, A. 2011. Identification of genetic polymorphism and DNA methylation pattern in wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 16(2): 157-165.
  • 59. Tsenov, N., Atanasova, D., Todorov, I., Ivanova, I. & Stoeva, I. 2009. Allelic diversity in Bulgarian winter wheat varieties based on polymorphism of glutenin subunit composition. Cereal Research Communications, 37(4): 551-558.
  • 60. TMO, 2017. Toprak mahsulleri ofisi genel müdürlüğü. (Web page: http://www.tmo.gov.tr) (Date accessed: 10.11.2018).
  • 61. Uthayakumaran S., Beasley, H.L., Stoddard, F.L., Keentok, M., PhanThien, N., Tanner, R.I. & Békés, F. 2002. Synergistic and additive effects of three high molecular weight glutenin subunit loci, I. Effects on wheat dough rheology. Cereal Chemistry, 79: 294-300.
  • 62. van Hintum, T.J.L. & Elings, A. 1991. Assessment of glutenin and phenotypic diversity of Syrian durum wheat landraces in relation to their geographical origin. Euphytica, 55: 209-215.
  • 63. Vavilov, N.I. 1951. The origin, variation, immunity and breeding of cultivated plants. In: Selected writing of N.I. Vavilov, translated from the Russian by K. Starr Chester. Chronica Botanica, 13: 1-366.
  • 64. Wrigley, C.W., Bekes, F., Cavanagh, C.R. & Bushuk, W. 2015. The gluten composition of wheat varieties and genotypes, online. (Web page: http://www.aaccnet.org/initiatives/definitions/Pages/gliadin.aspx) (Date accessed: 10.11.2018)
  • 65. Xu, Q., Xu, J., Liu, C.L., Chang, C., Wang, C.P., You, M.S., Li, B.Y. & Liu, G.T. 2008. PCR-based markers for identification of HMW-GS at Glu-1Bx loci in common wheat. Cereal Science, 47: 394-398.
Yıl 2020, Cilt: 21 Sayı: 1, 1 - 11, 15.04.2020
https://doi.org/10.23902/trkjnat.609487

Öz

Kültür
bitkileri için sekiz orijin merkezi vardır ve Türkiye, bu merkezlerden
ikisinin, Yakın Doğu ve Akdeniz'in, kesiştiği yerdedir. Türkiye bu nedenle
buğday, arpa, çavdar ve yulaf gibi ana tahıl bitkilerinin çeşitlendiği ve
dağıldığı gen merkezi olarak bilinir. Bu çalışmanın amacı, Türk ekmeklik
buğdaylarından 116 yerel buğday ırkının glüten allel sıklığı ve Glu-1 kalite skorunu belirlemektir.
SDS-PAGE ve PCR, glüten allellerini tanımlamak için kullanılmıştır.
İstatistiksel analizler için POPGENE 1.31 yazılımı kullanılmıştır. İncelenen
Türk yerel buğday ırkları toplam 19 farklı alt birim (Glu-A1'de 3 alt birim, Glu-B1'de
11 ve Glu-D1'de 5 alt birim) ve 50
farklı kombinasyon içermektedir. En yüksek ve en düşük allel kombinasyonları
sırasıyla Doğu Anadolu ve Ege bölgelerinde belirlenmiştir. Glu-A1c (% 65,11), Glu-B1b
(% 53,60) ve Glu-D1a (% 58,30) en sık
görülen alleller olarak tespit edilmiştir. Glu-1
kalite skoru, Türkiye genelinde incelenen genotipler için 6,07 olarak
bulunmuştur. Bölgeler arasında ortalama en yüksek (7,18) ve en düşük (4,80) Glu-1 skorları sırasıyla Marmara ve
Güneydoğu Anadolu bölgelerinde tespit edilmiştir. Çalışılan 116 aksesyondan 4
tanesi (TR32846-6, TR36948-1, TR45105 ve TR63536) kalite skoru 10 olup en
yüksek Glu-1 kalite skoruna sahipken
6 tanesinin ise (TR45398-4, TR48025-3, TR33264-6, TR393-5, TR52021-3 ve
TR45094) kalite skoru 9 olarak hesaplanmıştır. Daha fazla yerel çeşitlerin
çalışmalara eklenmesi yeni Glu-1 allelerinin
keşfedilmesine katkıda bulunabilir.

Proje Numarası

FBD-3666

Kaynakça

  • 1. Ahmad, M. 2000. Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theoretical and Applied Genetics, 101: 892-896.
  • 2. Atanasova, D., Tsenov, N., Todorov, I. & Ivanova, I. 2009. Glutenin composition of winter wheat varieties bred in Dobrudzha agricultural institute. Bulgarian Journal of Agricultural Science, 15: 9-19.
  • 3. Autran, J.C. & Feillet, P. 1985. Genetic and technological basis of protein quality for durum wheat in pasta. Proc. Protein Evaluation in Cereals and Legumes, Thessaloniki 23-24 October, 1985, Commission of the European Communities, Report EUR 10404 EN, 59-71.
  • 4. Bietz, J.A., Shepherd, K.W. & Wall, J.S. 1975. Single-kernel analysis of glutenin: Use in wheat genetics and breeding. Cereal Chemistry, 52: 513-532.
  • 5. Branlard, G., Autran, J.C. & Monneveux, P. 1989. High molecular weight glutenin subunits in durum wheat (Triticum durum). Theoretical and Applied Genetics, 78: 353-358.
  • 6. Caballero, L., Martin, M.A. & Alvarez, J.B. 2009. Genetic diversity for seed storage proteins in Lebanon and Turkey populations of wild diploid wheat (Triticum urartu Thum. Ex Gandil.). Genetic Resources and Crop Evolution, 56: 1117-1124.
  • 7. Carrillo, J.M., Vazquez, J.F. & Orellana, J. 1990. Relationship between gluten strength and glutenin proteins in durum wheat cultivars. Plant Breeding, 104: 325-333.
  • 8. De Bustos, A. & Jouve, N. 2003. Characterization and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theoretical and Applied Genetics, 107: 74-83.
  • 9. Dubcovsky, J. & Dvorak, J. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316:1862-1866.
  • 10. Dvorak, J., Luo, M.C., Yang, Z.L. & Zhang, H.B. 1998. The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97: 657-670.
  • 11. Feldman, M. 2001. Origin of cultivated wheat. In: (Bonjean AP, Angus WJ, eds. The world wheat book: a history of wheat breeding. Paris, France: Lavoisier Publishing, 3-56).
  • 12. Gao, X., Appelbee, M.J., Mekuria, G.T., Chalmers, K.J. & Mather, D.E. 2012. A second overexpression allele at the Glu-B1 high-molecular-weight glutenin locus of wheat: sequence characterization and functional effects. Theoretical and Applied Genetics, 124: 333-343.
  • 13. Gianibelli, M.C., Echaide, M., Larroque, O.R., Carrillo, J.M. & Dubcovsky, J. 2002. Biochemical and molecular characterization of Glu-1 loci in Argentinean wheat cultivars. Euphytica, 128: 61-73.
  • 14. Grain Sector Report, 2013. (Web page: http://www.tmo.gov.tr/upload/document/raporlar/hububatsektorraporu.pdf) (Date accessed: 01.09.2019).
  • 15. Gregova, E., Hermuth, J., Kraic, J. & Dotlacil, L. 1999. Protein heterogeneity in European wheat landraces and obsolete cultivars. Additional information. Genetic Resources and Crop Evolution, 46: 521-528.
  • 16. Gregova, E., Hermuth, J., Kraic, J. & Dotlacil, L. 2006. Protein heterogeneity in European wheat landraces and obsolete cultivars. Additional information II. Genetic Resources and Crop Evolution, 53: 867-871.
  • 17. Gupta, R.B., Bekes, F. & Wrigley, C.W. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats: Correlation study. Cereal Chemistry, 68: 328-333.
  • 18. Horvat, D., Drezner, G., Sudar, R., Simic, G., Dvojkovic, K., Spanic, V. & Magdic, D. 2015. Distribution of wheat protein components under different genetic background and environment. Turkish Journal of Field Crops, 20(2): 150-154.
  • 19. Jiang, Q.T., Wei, Y.M., Wang, J.R., Yan, Z.H. & Zheng, Y.L. 2006. Isolation and Sequence Analysis of HMW Glutenin Subunit 7Dy70.7 Ecoding Gene from Xinjiang Wheat (Triticum petropavlovskyi Udacz. et Migusch). Agricultural Science China, 5(2): 81-89.
  • 20. Juhász, A., Larroque, O.R., Tamas, L., Hsam, S., Zeller, F.J., Bekes, F. & Bedo, Z. 2003. Bankuti 1201-an old Hungarian wheat variety with special storage protein composition. Theoretical and Applied Genetics, 107: 697-704.
  • 21. Kaplan, M., Akar, T., Kamalak, A. & Bulut, S. 2014. Use of Diploid and Tetraploid Hulled Wheat Genotypes for Animal Feeding. Turkish Journal of Agriculture and Forestry, 38: 838-846.
  • 22. Lafiandra, D., Tucci, G.F., Pavoni, A. & Turchetta, T. 1997. PCR analysis of x and y-type genes present at the complex Glu-A1 locus in durum and bread wheat. Theoretical and Applied Genetics, 94: 235-240.
  • 23. Lagudah, E.S., Flood, R.G. & Halloran, G.M. 1987. Variation in high molecular weight glutenin subunits in landraces of hexaploid wheat from Afghanistan. Euphytica, 36: 3-9.
  • 24. Lawrence, G.J. & Shepherd, K.W. 1980. Variation in glutenin protein subunits of wheat. Australian Journal of Biological Sciences, 33: 221-233.
  • 25. Li, F., Jiang, X., Wei, Y., Xia, G. & Liu, S. 2012. Characterization of a novel type of HMW subunit of glutenin from Australopyrum retrofractum. Gene, 492: 65-70.
  • 26. Liu, Y., Xiong, Z.Y., He, Y.G., Shewry, P.R. & He, G.Y. 2007. Genetic diversity of HMW-GS in Chinese common wheat (Triticum aestivum L.) landraces from Hubei province. Genetic Resources and Crop Evolution, 54: 865-874.
  • 27. Lukow, O.M., Payne, P.I. & Tkachuk, R. 1989. The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread making quality. Journal of the Science of Food and Agriculture, 46: 451-460.
  • 28. Ma, W., Zhang, W. & Gale, K.R. 2003. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 134: 51-60.
  • 29. MacRitchie, F., duCros, D.L. & Wrigley, C.W. 1990. Flour polypeptides related to wheat quality. Pp. 79-145, in: (MacRitchie, F. (Editor), Advances in Cereal Science and Technology, Vol. 10. AACC, St Paul, Minnesota, USA).
  • 30. Margiotta, B., Colaprico, G. & Lafiandra, D. 1987. Variation for protein components associated with quality in durum wheat lines and varieties, 314-330. Proc. 3rd Int. Workshop Gluten Proteins, 6-9 May, Budapest, Hungary.
  • 31. McCarthy, P.L., Hansen, J.L., Zemetra, R.S. & Berger, P.H. 2002. Rapid identification of transformed wheat using a half-seed PCR assay. BioTechniques, 32: 560-564.
  • 32. McIntosh, R.A., Hart, G.E. & Gale, M.D. 1994. Catalogue of gene symbols for wheat (supplement). Annual Wheat Newsletter, 40: 362-375.
  • 33. Mishra, A., Bansal, S., Tomar, A., Khanna, V.K. & Gang, G.K. 2009. PCR based isolation and cloning of HMW glutenin gene(s) from wheat (T. aestivum var. PBW343) and its fusion with kafirin gene promoter of sorghum. Acta Biologica Szegediensis, 53(1): 9-15.
  • 34. Mondal, S., Tilley, M., Alviola, J.N., Waniska, R.D., Bean, S.R., Glover, K.D. & Hays, D.B. 2008. Use of near-isogenic wheat lines to determine the glutenin composition and functionality requirements for flour tortillas. Journal of Agricultural and Food Chemistry, 56: 179-184.
  • 35. Morgunov, A.I., Pena, R.J., Crossa, J. & Rajaram, S. 1993. Worldwide distribution of the Glu-1 alleles in bread wheat. Journal of Genetics and Breeding, 47: 53-60.
  • 36. Nakamura, H. 2000. The relationship between high-molecular weight glutenin subunit composition and the quality of Japanese hexaploid wheat lines. Journal of Agricultural and Food Chemistry, 48(7): 2648-2652.
  • 37. Nakamura, H., Inazu, A. & Hirano, H. 1999. Allelic variation in high-molecular-weight glutenin subunit Loci of Glu-1 in Japanese common wheats. Euphytica, 106: 131-138. 38. Nei, M. 1972. Genetic distances between populations. The American Naturalist, 106: 283-292. 39. Nucia, A., Okoń, S. & Tomczyńska-Mleko, M. 2019. Characterization of HMW glutenin subunits in European spring common wheat (Triticum aestivum L.) Genetic Resource and Crop Evolution, 66: 579-588. 40. Orth, R.A. & Bushuk, W. 1974. Studies of glutenin. VI. Chromosomal location for subunits of glutenin of common wheat. Cereal Chemistry, 51: 118-126.
  • 41. Payne, P.I. 1987a. Genetics of wheat storage protein and the effect of allelic variation on breadmaking quality. Annual Review of Plant Physiology, 38: 141-153.
  • 42. Payne, P.I. 1987b. The genetical basis of bread-making quality in wheat, In: Aspects of Applied Biology. Cereal Quality Association of Applied Biologists. 15: 79-90.
  • 43. Payne, P.I. & Lawrence, G.J. 1983. Catalogue of alleles for the complex gene loci GluA1, GluB1, GluD1, which code for the highmolecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Communications, 11: 29-35.
  • 44. Payne, P.I., Corfield, K.G. & Blackman, J.A. 1979. Identification of a high molecular weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. Theoretical and Applied Genetics, 55: 153-159.
  • 45. Payne, P.I., Holt, L.M., Jackson, E.A. & Law, C.N. 1984. Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding. Philosophical Transactions of the Royal Society B, 304: 359-371.
  • 46. Payne, P.I., Holt, L.M. & Law, C.N. 1981. Structural and genetical studies of the high molecular subunits of wheat glutenin. I. Allelic variation in subunits amongst varieties of wheat. Theoretical and Applied Genetics, 60: 229-236.
  • 47. Payne, P.I., Holt, L.M. & Lawrence, G.D. 1983. Detection of a novel high-molecular-weight subunit of glutenin in some Japanese hexaploid wheats. Journal of Cereal Science, 1: 3-8.
  • 48. Payne, P.I., Nightingale, M.A., Krattiger, A.F. & Holt, L.M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. Journal of the Science of Food and Agriculture, 40: 51-65.
  • 49. Pogna, N.E., Autran, J.C., Mellini, F., Lafiandra, D. & Feillet, P. 1990. Chromosome 1B encoded gliadins and glutenin subunits in durum wheat: Genetics and relationship to gluten strength. Journal of Cereal Science, 11: 15-34.
  • 50. Porceddu, E., Ceoloni, C., Lafiandra, D., Tanzarella, O.A. & Mugnozza, G.T.S. 1988. Genetic resources and plant breeding: problems and prospects, 7-22. Proc. 7th Int. Wheat Genetics Symposium, 13-19 July, Cambridge-UK.
  • 51. Radovanovic, N. & Cloutier, S. 2003. Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Molecular Breeding, 12: 51-59.
  • 52. Salmanowicz, B.P. & Dylewicz, M. 2007. Identification and characterization of high-molecular-weight glutenin genes in Polish triticale cultivars by PCR-based DNA markers. Journal of Applied Genetics, 48(4): 347-357.
  • 53. Shewry, P.R., Halford, N.G. & Lafiandra, D. 2003. Genetics of wheat gluten proteins. Advances in Genetics, 49: 111-184.
  • 54. Sultana, T., Ghafoor, A. & Ashraf, M. 2007. Genetic variability in bread wheat (Triticum aestivum L.) of Pakistan based on polymorphism for high molecular weight glutenin subunits. Genetic Resources and Crop Evolution, 54: 1159-1165.
  • 55. Temizgul, R., Akbulut, M. & Lafiandra, D. 2018. Genetic diversity of high-molecular-weight glutenin subunit compositions in bread wheat landraces originated from Turkey. Plant Genetic Resources, 16(1): 28-38.
  • 56. Terasawa, Y., Takara, K., Hirano, H., Kato, K., Kawahara, T., Saskuma, T. & Sasanuma, T. 2010. Genetic variation of high-molecular-weight glutenin subunit composition in Asian wheat. Genetic Resources and Crop Evolution, 58: 283-289.
  • 57. Terasawa, Y., Kawahara, T., Sasakuma, T. & Sasanuma, T. 2009. Evaluation of the genetic diversity of an Afghan wheat collection based on morphological variation, HMW glutenin subunit polymorphisms, and AFLP. Breeding Science, 59: 361-371.
  • 58. Tok, D., Senturk-Akfirat, F., Sevinç, D., Aydin, Y. & Altinkurt-Uncuoglu, A. 2011. Identification of genetic polymorphism and DNA methylation pattern in wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 16(2): 157-165.
  • 59. Tsenov, N., Atanasova, D., Todorov, I., Ivanova, I. & Stoeva, I. 2009. Allelic diversity in Bulgarian winter wheat varieties based on polymorphism of glutenin subunit composition. Cereal Research Communications, 37(4): 551-558.
  • 60. TMO, 2017. Toprak mahsulleri ofisi genel müdürlüğü. (Web page: http://www.tmo.gov.tr) (Date accessed: 10.11.2018).
  • 61. Uthayakumaran S., Beasley, H.L., Stoddard, F.L., Keentok, M., PhanThien, N., Tanner, R.I. & Békés, F. 2002. Synergistic and additive effects of three high molecular weight glutenin subunit loci, I. Effects on wheat dough rheology. Cereal Chemistry, 79: 294-300.
  • 62. van Hintum, T.J.L. & Elings, A. 1991. Assessment of glutenin and phenotypic diversity of Syrian durum wheat landraces in relation to their geographical origin. Euphytica, 55: 209-215.
  • 63. Vavilov, N.I. 1951. The origin, variation, immunity and breeding of cultivated plants. In: Selected writing of N.I. Vavilov, translated from the Russian by K. Starr Chester. Chronica Botanica, 13: 1-366.
  • 64. Wrigley, C.W., Bekes, F., Cavanagh, C.R. & Bushuk, W. 2015. The gluten composition of wheat varieties and genotypes, online. (Web page: http://www.aaccnet.org/initiatives/definitions/Pages/gliadin.aspx) (Date accessed: 10.11.2018)
  • 65. Xu, Q., Xu, J., Liu, C.L., Chang, C., Wang, C.P., You, M.S., Li, B.Y. & Liu, G.T. 2008. PCR-based markers for identification of HMW-GS at Glu-1Bx loci in common wheat. Cereal Science, 47: 394-398.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genetik
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Ridvan Temızgul 0000-0002-1033-7067

Mikail Akbulut 0000-0002-6323-3288

Proje Numarası FBD-3666
Yayımlanma Tarihi 15 Nisan 2020
Gönderilme Tarihi 22 Ağustos 2019
Kabul Tarihi 8 Kasım 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 21 Sayı: 1

Kaynak Göster

APA Temızgul, R., & Akbulut, M. (2020). ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES. Trakya University Journal of Natural Sciences, 21(1), 1-11. https://doi.org/10.23902/trkjnat.609487
AMA Temızgul R, Akbulut M. ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES. Trakya Univ J Nat Sci. Nisan 2020;21(1):1-11. doi:10.23902/trkjnat.609487
Chicago Temızgul, Ridvan, ve Mikail Akbulut. “ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES”. Trakya University Journal of Natural Sciences 21, sy. 1 (Nisan 2020): 1-11. https://doi.org/10.23902/trkjnat.609487.
EndNote Temızgul R, Akbulut M (01 Nisan 2020) ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES. Trakya University Journal of Natural Sciences 21 1 1–11.
IEEE R. Temızgul ve M. Akbulut, “ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES”, Trakya Univ J Nat Sci, c. 21, sy. 1, ss. 1–11, 2020, doi: 10.23902/trkjnat.609487.
ISNAD Temızgul, Ridvan - Akbulut, Mikail. “ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES”. Trakya University Journal of Natural Sciences 21/1 (Nisan 2020), 1-11. https://doi.org/10.23902/trkjnat.609487.
JAMA Temızgul R, Akbulut M. ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES. Trakya Univ J Nat Sci. 2020;21:1–11.
MLA Temızgul, Ridvan ve Mikail Akbulut. “ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES”. Trakya University Journal of Natural Sciences, c. 21, sy. 1, 2020, ss. 1-11, doi:10.23902/trkjnat.609487.
Vancouver Temızgul R, Akbulut M. ALLELE FREQUENCY OF GLUTENIN SUBUNITS AND GLU-1 QUALITY SCORES IN SOME TURKISH BREAD WHEAT LANDRACES. Trakya Univ J Nat Sci. 2020;21(1):1-11.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.