Yıl 2020, Cilt 4 , Sayı 2, Sayfalar 97 - 103 2020-04-01

A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS

Mustafa Tahsin GULER [1] , İsmail BİLİCAN [2]


Thickness measurement of the soft materials presents some difficulties for standard stylus thickness measurement devices. Since the soft materials are deformed by the stylus due to the applied pressure, correct thickness measurement cannot be realized. Here, PDMS (Polydimethylsiloxane) is used as soft material for thickness measurement. By taking the replica of the soft material with liquid plastic which becomes rigid after curing, the depth can be measured easily via conventional stylus thickness measurement devices.
Casting, Soft materials, Stylus thickness measurement
  • Bakan, G., S. Ayas, M. Serhatlioglu, C. Elbuken and A. Dana (2018). "Invisible Thin‐Film Patterns with Strong Infrared Emission as an Optical Security Feature." Advanced Optical Materials, Vol. 6, No. 21, pp. 1800613.
  • Bartholomeusz, D. A., R. W. Boutté and J. D. Andrade (2005). "Xurography: rapid prototyping of microstructures using a cutting plotter." Journal of Microelectromechanical systems, Vol. 14, No. 6, pp. 1364-1374.
  • Benton, M., M. R. Hossan, P. R. Konari and S. Gamagedara (2019). "Effect of process parameters and material properties on laser micromachining of microchannels." Micromachines, Vol. 10, No. 2, pp. 123.
  • Bilican, I., M. T. Guler, N. Gulener, M. Yuksel and S. Agan (2016). "Capacitive solvent sensing with interdigitated microelectrodes." Microsystem Technologies, Vol. 22, No. 3, pp. 659-668.
  • de Santana, P. P., T. P. Segato, E. Carrilho, R. S. Lima, N. Dossi, M. Y. Kamogawa, A. L. Gobbi, M. H. Piazzeta and E. Piccin (2013). "Fabrication of glass microchannels by xurography for electrophoresis applications." Analyst, Vol. 138, No. 6, pp. 1660-1664.
  • Delgadillo, J. O. V., S. Delorme, R. El-Ayoubi, R. DiRaddo and S. G. Hatzikiriakos (2010). "Effect of freezing on the passive mechanical properties of arterial samples." Journal of Biomedical Science and Engineering, Vol. 3, No. 07, pp. 645.
  • Duffy, D. C., J. C. McDonald, O. J. Schueller and G. M. Whitesides (1998). "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)." Analytical chemistry, Vol. 70, No. 23, pp. 4974-4984.
  • Gao, Y., H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng and F. Xiong (2017). "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring." Advanced Materials, Vol. 29, No. 39, pp. 1701985.
  • Gitlin, L., P. Schulze and D. Belder (2009). "Rapid replication of master structures by double casting with PDMS." Lab on a Chip, Vol. 9, No. 20, pp. 3000-3002.
  • Guler, M. T., P. Beyazkilic and C. Elbuken (2017). "A versatile plug microvalve for microfluidic applications." Sensors and Actuators A: Physical, Vol. 265, No., pp. 224-230.
  • Guler, M. T. and I. Bilican (2018). "Capacitive detection of single bacterium from drinking water with a detailed investigation of electrical flow cytometry." Sensors and Actuators A: Physical, Vol. 269, No., pp. 454-463.
  • Guler, M. T., I. Bilican, S. Agan and C. Elbuken (2015). "A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing." Journal of Micromechanics and Microengineering, Vol. 25, No. 9, pp. 095019.
  • Guler, M. T., Z. Isiksacan, M. Serhatlioglu and C. Elbuken (2018). "Self-powered disposable prothrombin time measurement device with an integrated effervescent pump." Sensors and Actuators B: Chemical, Vol. 273, No., pp. 350-357.
  • Guner, H., E. Ozgur, G. Kokturk, M. Celik, E. Esen, A. E. Topal, S. Ayas, Y. Uludag, C. Elbuken and A. Dana (2017). "A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection." Sensors and Actuators B: Chemical, Vol. 239, No., pp. 571-577.
  • Isgor, P. K., M. Marcali, M. Keser and C. Elbuken (2015). "Microfluidic droplet content detection using integrated capacitive sensors." Sensors and Actuators B: Chemical, Vol. 210, No., pp. 669-675.
  • Isiksacan, Z., M. Asghari and C. Elbuken (2017). "A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics." Microfluidics and Nanofluidics, Vol. 21, No. 3, pp. 44.
  • Isiksacan, Z., M. T. Guler, B. Aydogdu, I. Bilican and C. Elbuken (2016). "Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation." Journal of Micromechanics and Microengineering, Vol. 26, No. 3, pp. 035008.
  • Isiksacan, Z., N. Hastar, O. Erel and C. Elbuken (2018). "An optofluidic point-of-care device for quantitative investigation of erythrocyte aggregation during coagulation." Sensors and Actuators A: Physical, Vol. 281, No., pp. 24-30.
  • Kudo, H., T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki and K. Mitsubayashi (2006). "A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques." Biosensors and Bioelectronics, Vol. 22, No. 4, pp. 558-562.
  • Lee, T. Q. and S. L. Woo (1988). "A new method for determining cross-sectional shape and area of soft tissues." Journal of Biomechanical Engineering, Vol. 110, No. 2, pp. 110-114.
  • Lei, K. F., K.-F. Lee and M.-Y. Lee (2012). "Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement." Microelectronic Engineering, Vol. 99, No., pp. 1-5.
  • Li, M., S. Li, J. Wu, W. Wen, W. Li and G. Alici (2012). "A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer." Microfluidics and nanofluidics, Vol. 12, No. 5, pp. 751-760.
  • Lopes, R., R. O. Rodrigues, D. Pinho, V. Garcia, H. Schütte, R. Lima and S. Gassmann (2015). "Low cost microfluidic device for partial cell separation: Micromilling approach." 2015 IEEE International Conference on Industrial Technology (ICIT), pp.3347-3350.
  • Marcali, M. and C. Elbuken (2016). "Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets." Lab on a Chip, Vol. 16, No. 13, pp. 2494-2503.
  • Mohammed, M. I., M. N. H. Z. Alam, A. Kouzani and I. Gibson (2016). "Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly (methylmethacrylate) polymer." Journal of Micromechanics and Microengineering, Vol. 27, No. 1, pp. 015021.
  • Moon, J.-H., D. H. Baek, Y. Y. Choi, K. H. Lee, H. C. Kim and S.-H. Lee (2010). "Wearable polyimide–PDMS electrodes for intrabody communication." Journal of Micromechanics and Microengineering, Vol. 20, No. 2, pp. 025032.
  • Prakash, S. and S. Kumar (2018). "Pulse smearing and profile generation in CO2 laser micromachining on PMMA via raster scanning." Journal of Manufacturing Processes, Vol. 31, No., pp. 116-123.
  • Romoli, L., G. Tantussi and G. Dini (2011). "Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices." Optics and Lasers in Engineering, Vol. 49, No. 3, pp. 419-427.
  • Serhatlioglu, M., M. Asghari, M. Tahsin Guler and C. Elbuken (2019). "Impedance‐based viscoelastic flow cytometry." Electrophoresis, Vol. 40, No. 6, pp. 906-913.
  • Singhal, J., D. Pinho, R. Lopes, P. C Sousa, V. Garcia, H. Schütte, R. Lima and S. Gassmann (2015). "Blood flow visualization and measurements in microfluidic devices fabricated by a micromilling technique." Micro and Nanosystems, Vol. 7, No. 3, pp. 148-153.
  • Sun, Z., C. Yang, M. Eggersdorfer, J. Cui, Y. Li, M. Hai, D. Chen and D. A. Weitz (2019). "A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release." Chinese Chemical Letters, Vol., No.
  • Tavakoli, M., R. Rocha, L. Osorio, M. Almeida, A. De Almeida, V. Ramachandran, A. Tabatabai, T. Lu and C. Majidi (2017). "Carbon doped PDMS: Conductance stability over time and implications for additive manufacturing of stretchable electronics." Journal of Micromechanics and Microengineering, Vol. 27, No. 3, pp. 035010.
  • Zhou, X., L. Lau, W. W. L. Lam, S. W. N. Au and B. Zheng (2007). "Nanoliter dispensing method by degassed poly (dimethylsiloxane) microchannels and its application in protein crystallization." Analytical chemistry, Vol. 79, No. 13, pp. 4924-4930.
  • Zhu, B., Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo and X. Chen (2014). "Microstructured graphene arrays for highly sensitive flexible tactile sensors." Small, Vol. 10, No. 18, pp. 3625-3631.
Birincil Dil en
Konular Mühendislik
Bölüm Articles
Yazarlar

Orcid: 0000-0002-0478-3183
Yazar: Mustafa Tahsin GULER (Sorumlu Yazar)
Kurum: Dr., Kırıkkale University,
Ülke: Turkey


Orcid: 0000-0002-4415-6803
Yazar: İsmail BİLİCAN
Kurum: AKSARAY UNIVERSITY
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 1 Nisan 2020

Bibtex @araştırma makalesi { tuje636350, journal = {Turkish Journal of Engineering}, issn = {}, eissn = {2587-1366}, address = {Mersin Üniversitesi Mühendislik Fakültesi Çiftlikköy Kampüsü 33343, MERSİN}, publisher = {Murat YAKAR}, year = {2020}, volume = {4}, pages = {97 - 103}, doi = {10.31127/tuje.636350}, title = {A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS}, key = {cite}, author = {GULER, Mustafa Tahsin and BİLİCAN, İsmail} }
APA GULER, M , BİLİCAN, İ . (2020). A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS. Turkish Journal of Engineering , 4 (2) , 97-103 . DOI: 10.31127/tuje.636350
MLA GULER, M , BİLİCAN, İ . "A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS". Turkish Journal of Engineering 4 (2020 ): 97-103 <https://dergipark.org.tr/tr/pub/tuje/issue/51649/636350>
Chicago GULER, M , BİLİCAN, İ . "A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS". Turkish Journal of Engineering 4 (2020 ): 97-103
RIS TY - JOUR T1 - A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS AU - Mustafa Tahsin GULER , İsmail BİLİCAN Y1 - 2020 PY - 2020 N1 - doi: 10.31127/tuje.636350 DO - 10.31127/tuje.636350 T2 - Turkish Journal of Engineering JF - Journal JO - JOR SP - 97 EP - 103 VL - 4 IS - 2 SN - -2587-1366 M3 - doi: 10.31127/tuje.636350 UR - https://doi.org/10.31127/tuje.636350 Y2 - 2019 ER -
EndNote %0 Turkish Journal of Engineering A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS %A Mustafa Tahsin GULER , İsmail BİLİCAN %T A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS %D 2020 %J Turkish Journal of Engineering %P -2587-1366 %V 4 %N 2 %R doi: 10.31127/tuje.636350 %U 10.31127/tuje.636350
ISNAD GULER, Mustafa Tahsin , BİLİCAN, İsmail . "A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS". Turkish Journal of Engineering 4 / 2 (Nisan 2020): 97-103 . https://doi.org/10.31127/tuje.636350
AMA GULER M , BİLİCAN İ . A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS. TUJE. 2020; 4(2): 97-103.
Vancouver GULER M , BİLİCAN İ . A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS. Turkish Journal of Engineering. 2020; 4(2): 103-97.