Kinetic modeling of NH3 Selective Catalytic Reduction (NH3-SCR) of NOx in Cu-chabazite washcoated monolithic reactors has recently become an important task for design, control and calibration of heavy-duty engine aftertreatment systems. Development of detailed and accurate kinetic models rely on the correct simulation of the NO2 and NH3 storage at different conditions. Here, different kinetic schemes for NO2 adsorption and desorption were developed and compared to experimental data. For this purpose, firstly, realistic values of the active Cu sites in the Cu-zeolite were obtained using the temperature programmed desorption (TPD) of NH3 and NO2 which showed fractional coverages of 0.04 and 0.17 for the so-called ZCuOH and Z2Cu species which reside in the 8 and 6 membered rings (MR) of the zeolitic framework, respectively. Active site concentrations were used in the kinetic models which included simultaneous formation of nitrate/nitrite species or the formation of HNO3 intermediate which in turn resulted in the formation of nitrates or nitrites over the ZCuOH. Models also included or excluded the NO2 storage over the so called secondary Z2Cu sites. It was shown that models taking into account HNO3 intermediate formation along with two NO2 storage sites were better fits to the experimental data.
Bendrich M, Scheuer A & Votsmeier M (2020). Importance of nitrates in Cu-SCR modelling: A validation study using different driving cycles. Catalysis Today. doi: https://doi.org/10.1016/j.cattod.2020.03.015
Bendrich V M, Scheuerb A, Hayesa R E & Votsmeierb M (2018). Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst. Applied Catalysis B: Environmental, 222 76–87.
Bozbag S E, Şanlı D, Özener B, Hisar G & Erkey C (2020a). An Aging Model of NH3 Storage Sites for Predicting Kinetics of NH3 Adsorption, Desorption and Oxidation over Hydrothermally Aged Cu-Chabazite. Catalysts, 10, 411.
Bozbag S E, Şimşek M, Demir O, Şanlı D, Ozener B, Hisar G & Erkey C (2020b). Assessment of the Single-Site Kinetic Model for NH3-SCR on Cu-Chabazite for the Prediction of NOx Emissions in Dynamometer Tests. Emission Control Science and Technology, 6, 1.
Bozbag S E, Simsek M, Demir O, Sanli Yildiz D, Ozener H B., Hisar, G., & Erkey, C. (2018). Experimental and theoretical study of NH3 adsorption and desorption over a Cu-chabazite NH3-SCR catalyst. Turkish Journal of Chemistry, 42, 1768 – 1780.
Chatterjee D, Burkhardt T, Bandl-Konrad B, Braun T, Tronconi E, Nova I & Ciardelli C (2005). Numerical Simulation of Ammonia SCR-Catalytic Converters: Model Development and Application. SAE Technical Paper Series, 2005-01-965.
Chatterjee D, Burkhardt T, Weibel M, Nova I, Grossale A & Tronconi E (2007). Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters. SAE Technical Paper Series, 2007-01-1136.
Clark A H, Nuguid R J G, Steiger P, Marberger A, Petrov A W, Ferri D, . . . Kröcher O (2020). Selective Catalytic Reduction of NO with NH3 on Cu−SSZ-13: Deciphering the Low and High-temperature Rate-limiting Steps by Transient XAS Experiments. Chemcatchem, 12(5), 1429-1435. doi:10.1002/cctc.201901916
Colombo M, Nova I & Tronconi E (2012). Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment. Catalysis Today, 197(1), 243-255. doi:10.1016/j.cattod.2012.09.002
Daya R, Desai C & Vernham B (2018). Development and Validation of a Two-Site Kinetic Model for NH3-SCR over Cu-SSZ-13—Part 2: Full-Scale Model Validation, ASC Model Development, and SCR-ASC Model Application. Emission Control Science and Technology, 4, 172–197.
Daya R, Joshi S Y, Dadi R K, Tang Y, Trandal D, Srinivasan A, . . . Cunningham M (2020a). An explicit reduced-order model of Cu-Zeolite SCR catalyst for embedding in ECM. Chemical Engineering Journal, 127473. doi: https://doi.org/10.1016/j.cej.2020.127473
Daya R, Joshi S Y, Luo J, Dadi R K, Currier N W & Yezerets A (2020b). On kinetic modeling of change in active sites upon hydrothermal aging of Cu-SSZ-13. Applied Catalysis B: Environmental, 263, 118368. doi: https://doi.org/10.1016/j.apcatb.2019.118368
Daya R, Keturakis C J, Trandal D, Kumar A, Joshi S Y & Yezerets A (2021). Alternate pathway for standard SCR on Cu-zeolites with gas-phase ammonia. Reaction Chemistry & Engineering. doi:10.1039/D1RE00041A
Dhillon P S, Harold M P, Wang D, Kumar A & Joshi S Y (2019). Modeling and analysis of transport and reaction in washcoated monoliths: Cu-SSZ-13 SCR and dual-layer Cu-SSZ-13 + Pt/Al2O3 ASC. Reaction Chemistry & Engineering, 4(6), 1103-1115. doi:10.1039/C8RE00325D
Gao F, Kwak J H, Szanyi J & Peden C H F (2013). Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNO(x) Catalysts. Topics in Catalysis, 56(15-17), 1441-1459. doi:10.1007/s11244-013-0145-8
Gao Z, Pihl J, LaClair T & Fricke B (2021). Global kinetic modeling of NH3-SCR with two sites of NH3 storage on Cu-SSZ-13. Chemical Engineering Journal, 406, 127120. doi: https://doi.org/10.1016/j.cej.2020.127120
Greenaway A G, Marberger A, Thetford A, Lezcano-González I, Agote-Arán M, Nachtegaal M, . . . Beale A M (2020). Detection of key transient Cu intermediates in SSZ-13 during NH3-SCR deNOx by modulation excitation IR spectroscopy. Chemical Science, 11(2), 447-455. doi:10.1039/C9SC04905C
Janssens T V W, Falsig H, Lundegaard L F, Vennestrom P N R, Rasmussen S B, Moses P G, . . . Beato P (2015). A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. ACS Catalysis, 5(5), 2832-2845. doi:10.1021/cs501673g
Leistner K, Xie K, Kumar A, Kamasamudram K & Olsson L (2017). Ammonia Desorption Peaks Can Be Assigned to Different Copper Sites in Cu/SSZ-13. Catalysis Letters, 147(8), 1882-1890. doi:10.1007/s10562-017-2083-8
Luo J, Gao F, Kamasamudram K, Currier N, Peden C H F & Yezerets A (2017). New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration. Journal of Catalysis, 348, 291-299. doi: https://doi.org/10.1016/j.jcat.2017.02.025
Luo J, Wang D, Kumar A, Li J, Kamasamudram K, Currier N & Yezerets A (2016). Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning. Catalysis Today, 267, 3-9. doi: https://doi.org/10.1016/j.cattod.2015.12.002
Marberger A, Petrov A W, Steiger P, Elsener M, Kröcher O, Nachtegaal M & Ferri D (2018). Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nature Catalysis, 1(3), 221-227. doi:10.1038/s41929-018-0032-6
Olsson L, Sjovall H & Blint R J (2009). Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Applied Catalysis B-Environmental, 87(3-4), 200-210. doi:10.1016/j.apcatb.2008.09.007
Olsson L, Wijayanti K, Leistner K, Kumar A, Joshi S Y, Kamasamudram K, . . . Yezerets A (2015). A multi-site kinetic model for NH3-SCR over Cu/SSZ-13. Applied Catalysis B-Environmental, 174, 212-224. doi:10.1016/j.apcatb.2015.02.037
Paolucci C, Di Iorio J R, Ribeiro F H, Gounder R & Schneider W F (2016a). Chapter One - Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. In C. Song (Ed.), Advances in Catalysis (Vol. 59, pp. 1-107): Academic Press.
Paolucci C, Khurana I, Parekh A A, Li S, Shih A J, Li H, . . . Gounder R (2017). Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science, 357(6354), 898-903. doi:10.1126/science.aan5630
Paolucci C, Parekh A A, Khurana I, Di Iorio J R, Li H, Albarracin Caballero J D, . . . Schneider W F (2016b). Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. J. Am. Chem. Soc., 138(18), 6028-6048. doi:10.1021/jacs.6b02651
Selleri T, Nova I & Tronconi E (2019). An efficient reduced model of NH3-SCR converters for mobile aftertreatment systems. Chemical Engineering Journal, 377, 120053. doi:https://doi.org/10.1016/j.cej.2018.09.214
Supriyanto Wijayanti K, Kumar A, Joshi S, Kamasamudram K, Currier N W, . . . Olsson L (2015). Global kinetic modeling of hydrothermal aging of NH3-SCR over Cu-zeolites. Applied Catalysis B-Environmental, 163, 382-392. doi:10.1016/j.apcatb.2014.07.059
Usberti N, Gramigni F, Nasello N D, Iacobone U, Selleri T, Hu W, . . . Tronconi E (2020). An experimental and modelling study of the reactivity of adsorbed NH3 in the low temperature NH3-SCR reduction half-cycle over a Cu-CHA catalyst. Applied Catalysis B: Environmental, 279, 119397. doi:https://doi.org/10.1016/j.apcatb.2020.119397
Villamaina R, Liu S, Nova I, Tronconi E, Ruggeri M P, Collier J, . . . Thompsett D (2019). Speciation of Cu Cations in Cu-CHA Catalysts for NH3-SCR: Effects of SiO2/AlO3 Ratio and Cu-Loading Investigated by Transient Response Methods. ACS Catalysis, 9(10), 8916-8927. doi:10.1021/acscatal.9b02578
Year 2022,
Volume: 6 Issue: 3, 230 - 237, 20.07.2022
Bendrich M, Scheuer A & Votsmeier M (2020). Importance of nitrates in Cu-SCR modelling: A validation study using different driving cycles. Catalysis Today. doi: https://doi.org/10.1016/j.cattod.2020.03.015
Bendrich V M, Scheuerb A, Hayesa R E & Votsmeierb M (2018). Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst. Applied Catalysis B: Environmental, 222 76–87.
Bozbag S E, Şanlı D, Özener B, Hisar G & Erkey C (2020a). An Aging Model of NH3 Storage Sites for Predicting Kinetics of NH3 Adsorption, Desorption and Oxidation over Hydrothermally Aged Cu-Chabazite. Catalysts, 10, 411.
Bozbag S E, Şimşek M, Demir O, Şanlı D, Ozener B, Hisar G & Erkey C (2020b). Assessment of the Single-Site Kinetic Model for NH3-SCR on Cu-Chabazite for the Prediction of NOx Emissions in Dynamometer Tests. Emission Control Science and Technology, 6, 1.
Bozbag S E, Simsek M, Demir O, Sanli Yildiz D, Ozener H B., Hisar, G., & Erkey, C. (2018). Experimental and theoretical study of NH3 adsorption and desorption over a Cu-chabazite NH3-SCR catalyst. Turkish Journal of Chemistry, 42, 1768 – 1780.
Chatterjee D, Burkhardt T, Bandl-Konrad B, Braun T, Tronconi E, Nova I & Ciardelli C (2005). Numerical Simulation of Ammonia SCR-Catalytic Converters: Model Development and Application. SAE Technical Paper Series, 2005-01-965.
Chatterjee D, Burkhardt T, Weibel M, Nova I, Grossale A & Tronconi E (2007). Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters. SAE Technical Paper Series, 2007-01-1136.
Clark A H, Nuguid R J G, Steiger P, Marberger A, Petrov A W, Ferri D, . . . Kröcher O (2020). Selective Catalytic Reduction of NO with NH3 on Cu−SSZ-13: Deciphering the Low and High-temperature Rate-limiting Steps by Transient XAS Experiments. Chemcatchem, 12(5), 1429-1435. doi:10.1002/cctc.201901916
Colombo M, Nova I & Tronconi E (2012). Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment. Catalysis Today, 197(1), 243-255. doi:10.1016/j.cattod.2012.09.002
Daya R, Desai C & Vernham B (2018). Development and Validation of a Two-Site Kinetic Model for NH3-SCR over Cu-SSZ-13—Part 2: Full-Scale Model Validation, ASC Model Development, and SCR-ASC Model Application. Emission Control Science and Technology, 4, 172–197.
Daya R, Joshi S Y, Dadi R K, Tang Y, Trandal D, Srinivasan A, . . . Cunningham M (2020a). An explicit reduced-order model of Cu-Zeolite SCR catalyst for embedding in ECM. Chemical Engineering Journal, 127473. doi: https://doi.org/10.1016/j.cej.2020.127473
Daya R, Joshi S Y, Luo J, Dadi R K, Currier N W & Yezerets A (2020b). On kinetic modeling of change in active sites upon hydrothermal aging of Cu-SSZ-13. Applied Catalysis B: Environmental, 263, 118368. doi: https://doi.org/10.1016/j.apcatb.2019.118368
Daya R, Keturakis C J, Trandal D, Kumar A, Joshi S Y & Yezerets A (2021). Alternate pathway for standard SCR on Cu-zeolites with gas-phase ammonia. Reaction Chemistry & Engineering. doi:10.1039/D1RE00041A
Dhillon P S, Harold M P, Wang D, Kumar A & Joshi S Y (2019). Modeling and analysis of transport and reaction in washcoated monoliths: Cu-SSZ-13 SCR and dual-layer Cu-SSZ-13 + Pt/Al2O3 ASC. Reaction Chemistry & Engineering, 4(6), 1103-1115. doi:10.1039/C8RE00325D
Gao F, Kwak J H, Szanyi J & Peden C H F (2013). Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNO(x) Catalysts. Topics in Catalysis, 56(15-17), 1441-1459. doi:10.1007/s11244-013-0145-8
Gao Z, Pihl J, LaClair T & Fricke B (2021). Global kinetic modeling of NH3-SCR with two sites of NH3 storage on Cu-SSZ-13. Chemical Engineering Journal, 406, 127120. doi: https://doi.org/10.1016/j.cej.2020.127120
Greenaway A G, Marberger A, Thetford A, Lezcano-González I, Agote-Arán M, Nachtegaal M, . . . Beale A M (2020). Detection of key transient Cu intermediates in SSZ-13 during NH3-SCR deNOx by modulation excitation IR spectroscopy. Chemical Science, 11(2), 447-455. doi:10.1039/C9SC04905C
Janssens T V W, Falsig H, Lundegaard L F, Vennestrom P N R, Rasmussen S B, Moses P G, . . . Beato P (2015). A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. ACS Catalysis, 5(5), 2832-2845. doi:10.1021/cs501673g
Leistner K, Xie K, Kumar A, Kamasamudram K & Olsson L (2017). Ammonia Desorption Peaks Can Be Assigned to Different Copper Sites in Cu/SSZ-13. Catalysis Letters, 147(8), 1882-1890. doi:10.1007/s10562-017-2083-8
Luo J, Gao F, Kamasamudram K, Currier N, Peden C H F & Yezerets A (2017). New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration. Journal of Catalysis, 348, 291-299. doi: https://doi.org/10.1016/j.jcat.2017.02.025
Luo J, Wang D, Kumar A, Li J, Kamasamudram K, Currier N & Yezerets A (2016). Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning. Catalysis Today, 267, 3-9. doi: https://doi.org/10.1016/j.cattod.2015.12.002
Marberger A, Petrov A W, Steiger P, Elsener M, Kröcher O, Nachtegaal M & Ferri D (2018). Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nature Catalysis, 1(3), 221-227. doi:10.1038/s41929-018-0032-6
Olsson L, Sjovall H & Blint R J (2009). Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Applied Catalysis B-Environmental, 87(3-4), 200-210. doi:10.1016/j.apcatb.2008.09.007
Olsson L, Wijayanti K, Leistner K, Kumar A, Joshi S Y, Kamasamudram K, . . . Yezerets A (2015). A multi-site kinetic model for NH3-SCR over Cu/SSZ-13. Applied Catalysis B-Environmental, 174, 212-224. doi:10.1016/j.apcatb.2015.02.037
Paolucci C, Di Iorio J R, Ribeiro F H, Gounder R & Schneider W F (2016a). Chapter One - Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. In C. Song (Ed.), Advances in Catalysis (Vol. 59, pp. 1-107): Academic Press.
Paolucci C, Khurana I, Parekh A A, Li S, Shih A J, Li H, . . . Gounder R (2017). Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science, 357(6354), 898-903. doi:10.1126/science.aan5630
Paolucci C, Parekh A A, Khurana I, Di Iorio J R, Li H, Albarracin Caballero J D, . . . Schneider W F (2016b). Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. J. Am. Chem. Soc., 138(18), 6028-6048. doi:10.1021/jacs.6b02651
Selleri T, Nova I & Tronconi E (2019). An efficient reduced model of NH3-SCR converters for mobile aftertreatment systems. Chemical Engineering Journal, 377, 120053. doi:https://doi.org/10.1016/j.cej.2018.09.214
Supriyanto Wijayanti K, Kumar A, Joshi S, Kamasamudram K, Currier N W, . . . Olsson L (2015). Global kinetic modeling of hydrothermal aging of NH3-SCR over Cu-zeolites. Applied Catalysis B-Environmental, 163, 382-392. doi:10.1016/j.apcatb.2014.07.059
Usberti N, Gramigni F, Nasello N D, Iacobone U, Selleri T, Hu W, . . . Tronconi E (2020). An experimental and modelling study of the reactivity of adsorbed NH3 in the low temperature NH3-SCR reduction half-cycle over a Cu-CHA catalyst. Applied Catalysis B: Environmental, 279, 119397. doi:https://doi.org/10.1016/j.apcatb.2020.119397
Villamaina R, Liu S, Nova I, Tronconi E, Ruggeri M P, Collier J, . . . Thompsett D (2019). Speciation of Cu Cations in Cu-CHA Catalysts for NH3-SCR: Effects of SiO2/AlO3 Ratio and Cu-Loading Investigated by Transient Response Methods. ACS Catalysis, 9(10), 8916-8927. doi:10.1021/acscatal.9b02578
Bozbağ, S. E. (2022). Single and multisite detailed kinetic models for the adsorption and desorption of NO2 over Cu based NH3-SCR catalyst. Turkish Journal of Engineering, 6(3), 230-237. https://doi.org/10.31127/tuje.931038
AMA
Bozbağ SE. Single and multisite detailed kinetic models for the adsorption and desorption of NO2 over Cu based NH3-SCR catalyst. TUJE. July 2022;6(3):230-237. doi:10.31127/tuje.931038
Chicago
Bozbağ, Selmi Erim. “Single and Multisite Detailed Kinetic Models for the Adsorption and Desorption of NO2 over Cu Based NH3-SCR Catalyst”. Turkish Journal of Engineering 6, no. 3 (July 2022): 230-37. https://doi.org/10.31127/tuje.931038.
EndNote
Bozbağ SE (July 1, 2022) Single and multisite detailed kinetic models for the adsorption and desorption of NO2 over Cu based NH3-SCR catalyst. Turkish Journal of Engineering 6 3 230–237.
IEEE
S. E. Bozbağ, “Single and multisite detailed kinetic models for the adsorption and desorption of NO2 over Cu based NH3-SCR catalyst”, TUJE, vol. 6, no. 3, pp. 230–237, 2022, doi: 10.31127/tuje.931038.
ISNAD
Bozbağ, Selmi Erim. “Single and Multisite Detailed Kinetic Models for the Adsorption and Desorption of NO2 over Cu Based NH3-SCR Catalyst”. Turkish Journal of Engineering 6/3 (July 2022), 230-237. https://doi.org/10.31127/tuje.931038.
JAMA
Bozbağ SE. Single and multisite detailed kinetic models for the adsorption and desorption of NO2 over Cu based NH3-SCR catalyst. TUJE. 2022;6:230–237.
MLA
Bozbağ, Selmi Erim. “Single and Multisite Detailed Kinetic Models for the Adsorption and Desorption of NO2 over Cu Based NH3-SCR Catalyst”. Turkish Journal of Engineering, vol. 6, no. 3, 2022, pp. 230-7, doi:10.31127/tuje.931038.
Vancouver
Bozbağ SE. Single and multisite detailed kinetic models for the adsorption and desorption of NO2 over Cu based NH3-SCR catalyst. TUJE. 2022;6(3):230-7.