Online learning at the post-graduate level: Interpretations through Bloom’s revised taxonomy
Year 2025,
Volume: 14 Issue: 1, 67 - 92, 31.01.2025
F. Sehkar Fayda-kınık
,
Aylin Kirişçi Sarıkaya
Abstract
This study aimed to identify the perspectives of post-graduate students on online learning in the field of educational sciences utilizing Bloom’s revised taxonomy specified for the cognitive domain to qualitatively explore the factors affecting lower-order thinking skills (LOTS) including remembering, understanding, and applying as well as higher-order thinking skills (HOTS) composed of analyzing, evaluating, and creating. The participants for this investigation were comprised of 20 post-graduate students who had enrolled in at least one online course within the field of educational sciences in Türkiye during the academic year 2022-2023. The collected data from interviews were analyzed by adopting the “directed qualitative content analysis” (DQICA) and using the MAXQDA 2020. The results of the DQICA revealed three themes with the connected codes and categories; namely, factors for (1) abilities, (2) inabilities, and (3) expectations aligning with the LOTS and HOTS of Bloom’s revised taxonomy. Overall, the findings suggest that the design and management of online learning environments play a crucial role in facilitating both LOTS and HOTS in higher education.
Ethical Statement
This research was conducted with the permission of the Board of Ethics affiliated with IKU Institution of Social Sciences with decision no 2022/48 dated 17.03.2022.
References
- Abuhassna, H., Al-Rahmi, W. M., Yahya, N., Zakaria, M. A. Z. M., Kosnin, A. B. M., & Darwish, M. (2020). Development of a new model on utilizing online learning platforms to improve students’ academic achievements and satisfaction. International Journal of Educational Technology in Higher Education, 17(1), 1-23. https://doi.org/10.1186/s41239-020-00216-z
- Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s taxonomy of educational objectives (Complete Edition). Longman.
- Alaghbary, G. S. (2021). Integrating technology with Bloom's revised taxonomy: Web 2.0-enabled learning designs for online learning. Asian EFL Journal Research Articles., 28(2.3), 10-37.
- Assarroudi, A., Heshmati Nabavi, F., Armat, M. R., Ebadi, A., & Vaismoradi, M. (2018). Directed qualitative content analysis: The description and elaboration of its underpinning methods and data analysis process. Journal of Research in Nursing., 23(1), 42-55. https://doi.org/10.1177/1744987117741667
- Atashinsadaf, A., Ramezani-badr, F., Long, T., Imanipour, M., & Amini, K. (2024). Facilities, challenges, attitudes, and preferences of nursing students related to e-learning in the Covid-19 pandemic in Iranian context: A cross-sectional study. BMC Medical Education, 24(1), 1-14. https://doi.org/10.1186/s12909-024-05029-6
- Attia, A. S. (2021). Bloom’s taxonomy as a tool to optimize course learning outcomes and assessments in architecture programs. Journal of Applied Science and Engineering, 24(3), 315-322. https://doi.org/10.6180/jase.202106_24(3).0006
- Barari, N., RezaeiZadeh, M., Khorasani, A., & Alami, F. (2022). Designing and validating educational standards for E-teaching in virtual learning environments (VLEs), based on revised Bloom’s taxonomy. Interactive Learning Environments, 30(9), 1640-1652. https://doi.org/10.1080/10494820.2020.1739078
- Barrot, J. S., Llenares, I. I., & Del Rosario, L. S. (2021). Students’ online learning challenges during the pandemic and how they cope with them: The case of the Philippines. Education and Information Technologies, 26(6), 7321-7338. https://doi.org/10.1007/s10639-021-10589-x
- Blaschke, L. M., & Hase, S. (2016). Heutagogy: A holistic framework for creating twenty-first-century self-determined learners. In B. Gros & M. M. Kinshuk (Eds.) The future of ubiquitous learning. Lecture notes in educational technology. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-47724-3_2
- Bloom, B. S., Englehart, T., Furst, E., Hill, W., & Krathwohl, D. (1956). A taxonomy of educational objectives, Handbook 1: Cognitive domain. David McKay.
- Broadbent, J. (2020). Am I just another number? Using online education innovations to personalise and improve the student experience in online learning. In S. McKenzie, F. Garivaldis, & K. R. Dyer (Eds.), Tertiary online teaching and learning: Total perspectives and resources for digital education (pp.13-24). Springer, Singapore. https://doi.org/10.1007/978-981-15-8928-7_2
- Choy, J. L. F., & Quek, C. L. (2016). Modelling relationships between students’ academic achievement and community of inquiry in an online learning environment for a blended course. Australasia Journal of Educational Technology, 32(4), 106-124. https://doi.org/10.14742/ajet.2500
- Dalelio, C. (2013). Student participation in online discussion boards in a higher education setting. International Journal on E-Learning, 12(3), 249-271.
- D’Angelo, C. (2018). The impact of technology: Student engagement and success. In R. Power (Ed.), Technology and the curriculum: Summer 2018 (pp. 217-232). Power Learning Solutions.
- Darabi, A., Arrastia, M. C., Nelson, D. W., Cornille, T., & Liang, X. (2011). Cognitive presence in asynchronous online learning: A comparison of four discussion strategies. Journal of Computer Assisted Learning, 27(3), 216-227. https://doi.org/10.1111/j.1365-2729.2010.00392.x
- Dewa, M. (2022). Use of DMAIC methodology to enhance online delivery and assessment during and beyond the COVID-19 pandemic. SOTL in the South, 6(2), 100-116. https://doi.org/10.36615/sotls.v6i2.212
- Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5-22. https://doi.org/10.1177/0047239520934018
- Dipto, A. S., Limon, M. M. R., Tuba, F. T., Uddin, M. M., Khan, M. S. H., & Tuhin, R. A. (2023). On cognitive level classification of assessment-items using pre-trained BERT-based model. ACM International Conference Proceeding Series, 245-251. https://doi.org/10.1145/3639233.3639331
- Efthymiou, I.-P. (2023). Designing effective assessment strategies for online courses in higher education. In K. Walters (Ed.), Dynamic curriculum development and design strategies for effective online learning in higher education. (pp. 275-298). IGI Global. https://doi.org/10.4018/978-1-6684-8646-7.ch014
- Garrison, D. R., & Vaughan, N. D. (2008). Blended learning in higher education: Framework, principles and guidelines. Jossey-Bass.
- Guetterman, T. C., & James, T. G. (2023). A software feature for mixed methods analysis: The MAXQDA interactive quote matrix. Methods in Psychology, 8, Article 100116. https://doi.org/10.1016/j.metip.2023.100116.
- Haataja, E. S. H., Tolvanen, A., Vilppu, H., Kallio, M., Peltonen, J., & Metsäpelto, R.-L. (2023). Measuring higher-order cognitive skills with multiple choice questions –potentials and pitfalls of Finnish teacher education entrance. Teaching and Teacher Education, 122, 1-13. https://doi.org/10.1016/j.tate.2022.103943
- Halawi, L. A., McCarthy, R. V., & Pires, S. (2009). An evaluation of e-learning on the basis of Bloom's Taxonomy: An exploratory study. Journal of Education for Business, 84(6), 374-380. http://dx.doi.org/10.3200/JOEB.84.6.374-380
- Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99-107. https://doi.org/10.1080/00461520701263368
- Hopper, C. H. (2009). Practicing college learning strategies (5th ed). Cengage Learning, Inc.
- Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277-1288. https://doi.org/10.1177/1049732305276687
- Huberman, A. M., & Miles, M. B. (1994). Data management and analysis methods. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 428-444). Sage Publications, Inc.
- Ilgaz, H., & Afacan Adanir, G. (2020). Providing online exams for online learners: Does it really matter for them? Education and Information Technologies, 25(2), 1255-1269. https://doi.org/10.1007/s10639-019-10020-6
- Jansen, T., & Möller, J. (2022). Teacher judgments in school exams: Influences of students’ lower-order-thinking skills on the assessment of students’ higher-order-thinking skills. Teaching and Teacher Education, 111, Article 103616. https://doi.org/10.1016/j.tate.2021.103616
- Jonassen, D.H. (2010). Learning to solve problems: A handbook for designing problem-solving learning environments (1st ed.). Routledge. https://doi.org/10.4324/9780203847527
- Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning. Research in Learning Technology, 23, 1-13. https://doi.org/10.3402/rlt.v23.26507
- Kebritchi, M., Lipschuetz, A., & Santiague, L. (2017). Issues and challenges for teaching successful online courses in higher education: A literature review. Journal of Educational Technology Systems, 46(1), 4-29. https://doi.org/10.1177/0047239516661713
- Kibiswa, N. K. (2019). Directed qualitative content analysis (DQlCA): A tool for conflict analysis. The Qualitative Report, 24(8), 2059-2079. https://doi.org/10.46743/2160-3715/2019.3778
- Kilickaya, F. (2023). Transition to online assessment: Opportunities and challenges for language lecturers in the EFL tertiary context. English Language Education, 31, 153-170. https://doi.org/10.1007/978-3-031-27825-9_8
- Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41(4), 212-218. https://doi.org/10.1207/s15430421tip4104\_2
- Laddha, M. D., Lokare, V. T., Kiwelekar, A. W., & Netak, L. D. (2021). Classifications of the summative assessment for revised Bloom’s taxonomy by using deep learning. International Journal of Engineering Trends and Technology, 69(3), 211-218. https://doi.org/10.14445/22315381/IJETT-V69I3P232
- Lewis, A., & Smith, D. (1993). Defining higher order thinking. Theory Into Practice, 32(3), 131-137. https://doi.org/10.1080/00405849309543588
- Lin, X., Sun, Q., & Zhang, X. (2021). Using learners’ self-generated quizzes in online courses. Distance Education, 42(3), 391-409. https://doi.org/10.1080/01587919.2021.1956303
- Meng, W., Yu, L., Liu, C., Pan, N., Pang, X., & Zhu, Y. (2023). A systematic review of the effectiveness of online learning in higher education during the COVID-19 pandemic period. Frontiers in Education, 8, Article 1334153. https://doi.org/10.3389/feduc.2023.1334153
- Metsäpelto, R.-L., Poikkeus, A.-M., Heikkilä, M., Husu, J., Laine, A., Lappalainen, K., Lähteenmäki, M., Mikkilä-Erdmann, M., Warinowski, A., Iiskala, T., Hangelin, S., Harmoinen, S., Holmström, A., Kyrö-Ämmälä, O., Lehesvuori, S., Mankki, V., & Suvilehto, P. (2022). A multidimensional adapted process model of teaching. Educational Assessment, Evaluation and Accountability, 34(2), 143-172. https://doi.org/10.1007/s11092-021-09373-9
- Mayer, R. E. (2019). Thirty years of research on online learning. Applied Cognitive Psychology, 33(2), 152-159. https://doi.org/10.1002/acp.3482
- Palloff, R. M., & Pratt, K. (2007). Building online learning communities: Effective strategies for the virtual classroom (2nd ed.). John Wiley & Sons.
- Patil, S. K., & Shreyas, M. M. (2018). A comparative study of question bank classification based on revised Bloom’s taxonomy using SVM and K-NN. 2017 2nd International Conference on Emerging Computation and Information Technologies, ICECIT 2017. https://doi.org/10.1109/ICECIT.2017.8453305
- Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice. Fourth edition. Sage publications.
- Picciano, A. G. (2009). Blending with purpose: The multimodal model. Journal of Asynchronous Learning Networks, 13(1), 7-18. https://doi.org/10.24059/olj.v13i1.1673
- Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223-231. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
- Rathgeber, J. & Mantie, R. (2019). Markers of agency in preservice music teachers: A directed content analysis of written coursework. Bulletin of the Council for Research in Music Education, 219, 27-46. https://doi.org/10.5406/bulcouresmusedu.219.0027
- Raja, R., & Nagasubramani, P. (2018). Impact of modern technology in education. Journal of Applied and Advanced Research, 3(1), 33-35. https://doi.org/10.21839/jaar.2018.v3iS1.165
- Ram, M. P., Ajay, K. K., & Gopinathan Nair, A. (2020). Geoscience curriculum: Approach through learning taxonomy and outcome-based education. Higher Education for the Future, 7(1), 22-44. https://doi.org/10.1177/2347631119886403
- Ruan, C., & Yang, L. (2021). Analysis of online learning behavior characteristics and influencing factors based on link prediction. Proceedings of IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, IPEC 2021, 1059-1062. https://doi.org/10.1109/IPEC51340.2021.9421205
- Salarvand, S., Mousavi, M.-S., & Rahimi, M. (2023). Communication and cooperation challenges in the online classroom in the COVID-19 era: A qualitative study. BMC Medical Education, 23(1), 1-12. https://doi.org/10.1186/s12909-023-04189-1
- Sarkar, S. K. (2023). Bloom’s taxonomy and examination reform in higher education using ICT as a tool. Journal of Advances in Education and Philosophy, 7(5), 173-177. http://dx.doi.org/10.36348/jaep.2023.v07i05.005
- Sebbaq, H., & El Faddouli, N.- E. (2022). Fine-tuned BERT model for large scale and cognitive classification of MOOCs. The International Review of Research in Open and Distributed Learning, 23(2), 170-190. https://doi.org/10.19173/irrodl.v23i2.6023
- Seker, H., & Guney, B. G. (2012). History of science in the physics curriculum: A directed content analysis of historical sources. Science & Education, 21, 683-703. https://doi.org/10.1007/s11191-011-9416-6
- Schraw, G., McCrudden, M. T., Lehman, S., & Hoffman, B. (2011). An overview of thinking skills. In G. Schraw, & D. R. Robinson (Eds.), Assessment of higher order thinking skills (pp.19-45). Information Age.
- Sheydayi, A., & Dadashpoor, H. (2023). Conducting qualitative content analysis in urban planning research and urban studies. Habitat International, 139, Article 102878. https://doi.org/10.1016/j.habitatint.2023.102878.
- Singh, J., Steele, K., & Singh, L. (2021). Combining the best of online and face-to-face learning: Hybrid and blended learning approach for Covid-19, post-vaccine, & post-pandemic world. Journal of Educational Technology Systems, 50(2), 140-171. https://doi.org/10.1177/00472395211047865
- Skylar, A. A., Higgins, K., Boone, R., & Jones, P., (2005). Distance education: An exploration of alternative methods and types of instructional media in teacher education. Journal of Special Education Technology, 20(3), 25-34. https://doi.org/10.1177/016264340502000303
- Song, D., Bonk, C. J., & English, R. M. (2016). Motivational factors in self-directed informal learning from online learning resources. Cogent Education, 3(1), 1205838. https://doi.org/10.1080/2331186X.2016.1205838
- Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261-292. https://doi.org/10.1007/s10648-019-09465-5
- Tibi, M. H. (2018). Computer science students’ attitudes towards the use of structured and unstructured discussion forums in online courses. Online Learning, 22(1), 93-106. https://doi.org/10.24059/olj.v22i1.995
- Tomak, B., & Atas, U. (2023). Learner readiness and efficiency of learning English in online higher education context: Voices of Turkish EFL learners. Participatory Educational Research, 10(5), 168-183. https://doi.org/10.17275/per.23.80.10.5
- Tuma, F., & Nassar, A. K. (2021). Applying Bloom’s taxonomy in clinical surgery: Practical examples. Annals of Medicine and Surgery, 69(2021), 102656. https://doi.org/10.1016/j.amsu.2021.102656
- Vlachopoulos, D., & Makri, A. (2019). Online communication and interaction in distance higher education: A framework study of good practice. International Review of Education, 65(4), 605-632. https://doi.org/10.1007/s11159-019-09792-3
- Wegmann, S. J., & McCauley, J. K. (2014). Investigating asynchronous online communication: A connected stance revealed. Journal of Asynchronous Learning Networks, 18(1), 1-17.
- Wilson, L. O. (2016). Anderson and Krathwohl–Bloom’s taxonomy revised: Understanding the new version of Bloom's taxonomy. https://quincycollege.edu/wp-content/uploads/Anderson-and-Krathwohl_Revised-Blooms-Taxonomy.pdf
- Yang, Y., Zhao, B., & Chen, J. (2022). Remote areas college students’ online learning engagement investigation and improvement strategies. Fourth International Conference on Computer Science and Educational Informatization (CSEI 2022), Taiyuan, China.
- Yıldırım, A. & Şimşek, H. (2021). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research methods in the social sciences]. (12th ed.) Seçkin.
- Zoller, U., & Tsaparlis, G. (1997). Higher and lower-order cognitive skills: The case of chemistry. Research in Science Education, 27(1), 117-130. https://doi.org/10.1007/BF02463036
Lisansüstü düzeyde çevrimiçi öğrenme: Yenilenmiş Bloom taksonomisi açısından bir değerlendirme
Year 2025,
Volume: 14 Issue: 1, 67 - 92, 31.01.2025
F. Sehkar Fayda-kınık
,
Aylin Kirişçi Sarıkaya
Abstract
Bu çalışma, eğitim bilimleri alanındaki lisansüstü öğrencilerinin çevrimiçi öğrenmeye dair bakış açılarını Bloom’un bilişsel taksonomisi çerçevesinde ortaya koymayı amaçlamaktadır. Bu doğrultuda, çalışma ile Bloom’un yenilenmiş taksonomisi ışığında bilişsel alan için belirlenmiş olan alt düzey düşünme becerileri (ADDB) olan hatırlama, anlama ve uygulama ile üst düzey düşünme becerileri (ÜDDB) olan analiz etme, değerlendirme ve yaratma süreçleri ile ilgili olarak çevrimiçi öğrenme sürecini etkileyen faktörler belirlenmiştir. Çalışmanın katılımcıları, Türkiye’de eğitim bilimleri alanında 2022-2023 eğitim yılında en az bir çevrimiçi ders almış 20 lisansüstü öğrenciden oluşmaktadır. Görüşme yöntemi ile toplanan veriler, yönlendirilmiş nitel içerik analizi (YNİA) yöntemi ile MAXQDA 2020 analiz programı kullanılarak analiz edilmiştir. Elde edilen bulgular, ADDB ve ÜDDB’ler ile uyumlu şekilde katılımcılar açısından (1) yeterliklere ilişkin faktörler, (2) yetersizliklere ilişkin faktörler ve (3) beklentiler olmak üzere üç tema altında toplanmıştır. Sonuç olarak, bulgular doğrultusunda yükseköğretim düzeyinde çevrimiçi öğrenme ortamlarında hem ADDB hem de ÜDDB’lerin geliştirilebilmesi açısından çevrimiçi öğretim tasarımının ve sınıf yönetim becerilerinin kritik önemi vurgulanmaktadır.
Ethical Statement
This research was conducted with the permission of the Board of Ethics affiliated with IKU Institution of Social Sciences with decision no 2022/48 dated 17.03.2022.
References
- Abuhassna, H., Al-Rahmi, W. M., Yahya, N., Zakaria, M. A. Z. M., Kosnin, A. B. M., & Darwish, M. (2020). Development of a new model on utilizing online learning platforms to improve students’ academic achievements and satisfaction. International Journal of Educational Technology in Higher Education, 17(1), 1-23. https://doi.org/10.1186/s41239-020-00216-z
- Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s taxonomy of educational objectives (Complete Edition). Longman.
- Alaghbary, G. S. (2021). Integrating technology with Bloom's revised taxonomy: Web 2.0-enabled learning designs for online learning. Asian EFL Journal Research Articles., 28(2.3), 10-37.
- Assarroudi, A., Heshmati Nabavi, F., Armat, M. R., Ebadi, A., & Vaismoradi, M. (2018). Directed qualitative content analysis: The description and elaboration of its underpinning methods and data analysis process. Journal of Research in Nursing., 23(1), 42-55. https://doi.org/10.1177/1744987117741667
- Atashinsadaf, A., Ramezani-badr, F., Long, T., Imanipour, M., & Amini, K. (2024). Facilities, challenges, attitudes, and preferences of nursing students related to e-learning in the Covid-19 pandemic in Iranian context: A cross-sectional study. BMC Medical Education, 24(1), 1-14. https://doi.org/10.1186/s12909-024-05029-6
- Attia, A. S. (2021). Bloom’s taxonomy as a tool to optimize course learning outcomes and assessments in architecture programs. Journal of Applied Science and Engineering, 24(3), 315-322. https://doi.org/10.6180/jase.202106_24(3).0006
- Barari, N., RezaeiZadeh, M., Khorasani, A., & Alami, F. (2022). Designing and validating educational standards for E-teaching in virtual learning environments (VLEs), based on revised Bloom’s taxonomy. Interactive Learning Environments, 30(9), 1640-1652. https://doi.org/10.1080/10494820.2020.1739078
- Barrot, J. S., Llenares, I. I., & Del Rosario, L. S. (2021). Students’ online learning challenges during the pandemic and how they cope with them: The case of the Philippines. Education and Information Technologies, 26(6), 7321-7338. https://doi.org/10.1007/s10639-021-10589-x
- Blaschke, L. M., & Hase, S. (2016). Heutagogy: A holistic framework for creating twenty-first-century self-determined learners. In B. Gros & M. M. Kinshuk (Eds.) The future of ubiquitous learning. Lecture notes in educational technology. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-47724-3_2
- Bloom, B. S., Englehart, T., Furst, E., Hill, W., & Krathwohl, D. (1956). A taxonomy of educational objectives, Handbook 1: Cognitive domain. David McKay.
- Broadbent, J. (2020). Am I just another number? Using online education innovations to personalise and improve the student experience in online learning. In S. McKenzie, F. Garivaldis, & K. R. Dyer (Eds.), Tertiary online teaching and learning: Total perspectives and resources for digital education (pp.13-24). Springer, Singapore. https://doi.org/10.1007/978-981-15-8928-7_2
- Choy, J. L. F., & Quek, C. L. (2016). Modelling relationships between students’ academic achievement and community of inquiry in an online learning environment for a blended course. Australasia Journal of Educational Technology, 32(4), 106-124. https://doi.org/10.14742/ajet.2500
- Dalelio, C. (2013). Student participation in online discussion boards in a higher education setting. International Journal on E-Learning, 12(3), 249-271.
- D’Angelo, C. (2018). The impact of technology: Student engagement and success. In R. Power (Ed.), Technology and the curriculum: Summer 2018 (pp. 217-232). Power Learning Solutions.
- Darabi, A., Arrastia, M. C., Nelson, D. W., Cornille, T., & Liang, X. (2011). Cognitive presence in asynchronous online learning: A comparison of four discussion strategies. Journal of Computer Assisted Learning, 27(3), 216-227. https://doi.org/10.1111/j.1365-2729.2010.00392.x
- Dewa, M. (2022). Use of DMAIC methodology to enhance online delivery and assessment during and beyond the COVID-19 pandemic. SOTL in the South, 6(2), 100-116. https://doi.org/10.36615/sotls.v6i2.212
- Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5-22. https://doi.org/10.1177/0047239520934018
- Dipto, A. S., Limon, M. M. R., Tuba, F. T., Uddin, M. M., Khan, M. S. H., & Tuhin, R. A. (2023). On cognitive level classification of assessment-items using pre-trained BERT-based model. ACM International Conference Proceeding Series, 245-251. https://doi.org/10.1145/3639233.3639331
- Efthymiou, I.-P. (2023). Designing effective assessment strategies for online courses in higher education. In K. Walters (Ed.), Dynamic curriculum development and design strategies for effective online learning in higher education. (pp. 275-298). IGI Global. https://doi.org/10.4018/978-1-6684-8646-7.ch014
- Garrison, D. R., & Vaughan, N. D. (2008). Blended learning in higher education: Framework, principles and guidelines. Jossey-Bass.
- Guetterman, T. C., & James, T. G. (2023). A software feature for mixed methods analysis: The MAXQDA interactive quote matrix. Methods in Psychology, 8, Article 100116. https://doi.org/10.1016/j.metip.2023.100116.
- Haataja, E. S. H., Tolvanen, A., Vilppu, H., Kallio, M., Peltonen, J., & Metsäpelto, R.-L. (2023). Measuring higher-order cognitive skills with multiple choice questions –potentials and pitfalls of Finnish teacher education entrance. Teaching and Teacher Education, 122, 1-13. https://doi.org/10.1016/j.tate.2022.103943
- Halawi, L. A., McCarthy, R. V., & Pires, S. (2009). An evaluation of e-learning on the basis of Bloom's Taxonomy: An exploratory study. Journal of Education for Business, 84(6), 374-380. http://dx.doi.org/10.3200/JOEB.84.6.374-380
- Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99-107. https://doi.org/10.1080/00461520701263368
- Hopper, C. H. (2009). Practicing college learning strategies (5th ed). Cengage Learning, Inc.
- Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277-1288. https://doi.org/10.1177/1049732305276687
- Huberman, A. M., & Miles, M. B. (1994). Data management and analysis methods. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 428-444). Sage Publications, Inc.
- Ilgaz, H., & Afacan Adanir, G. (2020). Providing online exams for online learners: Does it really matter for them? Education and Information Technologies, 25(2), 1255-1269. https://doi.org/10.1007/s10639-019-10020-6
- Jansen, T., & Möller, J. (2022). Teacher judgments in school exams: Influences of students’ lower-order-thinking skills on the assessment of students’ higher-order-thinking skills. Teaching and Teacher Education, 111, Article 103616. https://doi.org/10.1016/j.tate.2021.103616
- Jonassen, D.H. (2010). Learning to solve problems: A handbook for designing problem-solving learning environments (1st ed.). Routledge. https://doi.org/10.4324/9780203847527
- Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning. Research in Learning Technology, 23, 1-13. https://doi.org/10.3402/rlt.v23.26507
- Kebritchi, M., Lipschuetz, A., & Santiague, L. (2017). Issues and challenges for teaching successful online courses in higher education: A literature review. Journal of Educational Technology Systems, 46(1), 4-29. https://doi.org/10.1177/0047239516661713
- Kibiswa, N. K. (2019). Directed qualitative content analysis (DQlCA): A tool for conflict analysis. The Qualitative Report, 24(8), 2059-2079. https://doi.org/10.46743/2160-3715/2019.3778
- Kilickaya, F. (2023). Transition to online assessment: Opportunities and challenges for language lecturers in the EFL tertiary context. English Language Education, 31, 153-170. https://doi.org/10.1007/978-3-031-27825-9_8
- Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41(4), 212-218. https://doi.org/10.1207/s15430421tip4104\_2
- Laddha, M. D., Lokare, V. T., Kiwelekar, A. W., & Netak, L. D. (2021). Classifications of the summative assessment for revised Bloom’s taxonomy by using deep learning. International Journal of Engineering Trends and Technology, 69(3), 211-218. https://doi.org/10.14445/22315381/IJETT-V69I3P232
- Lewis, A., & Smith, D. (1993). Defining higher order thinking. Theory Into Practice, 32(3), 131-137. https://doi.org/10.1080/00405849309543588
- Lin, X., Sun, Q., & Zhang, X. (2021). Using learners’ self-generated quizzes in online courses. Distance Education, 42(3), 391-409. https://doi.org/10.1080/01587919.2021.1956303
- Meng, W., Yu, L., Liu, C., Pan, N., Pang, X., & Zhu, Y. (2023). A systematic review of the effectiveness of online learning in higher education during the COVID-19 pandemic period. Frontiers in Education, 8, Article 1334153. https://doi.org/10.3389/feduc.2023.1334153
- Metsäpelto, R.-L., Poikkeus, A.-M., Heikkilä, M., Husu, J., Laine, A., Lappalainen, K., Lähteenmäki, M., Mikkilä-Erdmann, M., Warinowski, A., Iiskala, T., Hangelin, S., Harmoinen, S., Holmström, A., Kyrö-Ämmälä, O., Lehesvuori, S., Mankki, V., & Suvilehto, P. (2022). A multidimensional adapted process model of teaching. Educational Assessment, Evaluation and Accountability, 34(2), 143-172. https://doi.org/10.1007/s11092-021-09373-9
- Mayer, R. E. (2019). Thirty years of research on online learning. Applied Cognitive Psychology, 33(2), 152-159. https://doi.org/10.1002/acp.3482
- Palloff, R. M., & Pratt, K. (2007). Building online learning communities: Effective strategies for the virtual classroom (2nd ed.). John Wiley & Sons.
- Patil, S. K., & Shreyas, M. M. (2018). A comparative study of question bank classification based on revised Bloom’s taxonomy using SVM and K-NN. 2017 2nd International Conference on Emerging Computation and Information Technologies, ICECIT 2017. https://doi.org/10.1109/ICECIT.2017.8453305
- Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice. Fourth edition. Sage publications.
- Picciano, A. G. (2009). Blending with purpose: The multimodal model. Journal of Asynchronous Learning Networks, 13(1), 7-18. https://doi.org/10.24059/olj.v13i1.1673
- Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223-231. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
- Rathgeber, J. & Mantie, R. (2019). Markers of agency in preservice music teachers: A directed content analysis of written coursework. Bulletin of the Council for Research in Music Education, 219, 27-46. https://doi.org/10.5406/bulcouresmusedu.219.0027
- Raja, R., & Nagasubramani, P. (2018). Impact of modern technology in education. Journal of Applied and Advanced Research, 3(1), 33-35. https://doi.org/10.21839/jaar.2018.v3iS1.165
- Ram, M. P., Ajay, K. K., & Gopinathan Nair, A. (2020). Geoscience curriculum: Approach through learning taxonomy and outcome-based education. Higher Education for the Future, 7(1), 22-44. https://doi.org/10.1177/2347631119886403
- Ruan, C., & Yang, L. (2021). Analysis of online learning behavior characteristics and influencing factors based on link prediction. Proceedings of IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, IPEC 2021, 1059-1062. https://doi.org/10.1109/IPEC51340.2021.9421205
- Salarvand, S., Mousavi, M.-S., & Rahimi, M. (2023). Communication and cooperation challenges in the online classroom in the COVID-19 era: A qualitative study. BMC Medical Education, 23(1), 1-12. https://doi.org/10.1186/s12909-023-04189-1
- Sarkar, S. K. (2023). Bloom’s taxonomy and examination reform in higher education using ICT as a tool. Journal of Advances in Education and Philosophy, 7(5), 173-177. http://dx.doi.org/10.36348/jaep.2023.v07i05.005
- Sebbaq, H., & El Faddouli, N.- E. (2022). Fine-tuned BERT model for large scale and cognitive classification of MOOCs. The International Review of Research in Open and Distributed Learning, 23(2), 170-190. https://doi.org/10.19173/irrodl.v23i2.6023
- Seker, H., & Guney, B. G. (2012). History of science in the physics curriculum: A directed content analysis of historical sources. Science & Education, 21, 683-703. https://doi.org/10.1007/s11191-011-9416-6
- Schraw, G., McCrudden, M. T., Lehman, S., & Hoffman, B. (2011). An overview of thinking skills. In G. Schraw, & D. R. Robinson (Eds.), Assessment of higher order thinking skills (pp.19-45). Information Age.
- Sheydayi, A., & Dadashpoor, H. (2023). Conducting qualitative content analysis in urban planning research and urban studies. Habitat International, 139, Article 102878. https://doi.org/10.1016/j.habitatint.2023.102878.
- Singh, J., Steele, K., & Singh, L. (2021). Combining the best of online and face-to-face learning: Hybrid and blended learning approach for Covid-19, post-vaccine, & post-pandemic world. Journal of Educational Technology Systems, 50(2), 140-171. https://doi.org/10.1177/00472395211047865
- Skylar, A. A., Higgins, K., Boone, R., & Jones, P., (2005). Distance education: An exploration of alternative methods and types of instructional media in teacher education. Journal of Special Education Technology, 20(3), 25-34. https://doi.org/10.1177/016264340502000303
- Song, D., Bonk, C. J., & English, R. M. (2016). Motivational factors in self-directed informal learning from online learning resources. Cogent Education, 3(1), 1205838. https://doi.org/10.1080/2331186X.2016.1205838
- Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261-292. https://doi.org/10.1007/s10648-019-09465-5
- Tibi, M. H. (2018). Computer science students’ attitudes towards the use of structured and unstructured discussion forums in online courses. Online Learning, 22(1), 93-106. https://doi.org/10.24059/olj.v22i1.995
- Tomak, B., & Atas, U. (2023). Learner readiness and efficiency of learning English in online higher education context: Voices of Turkish EFL learners. Participatory Educational Research, 10(5), 168-183. https://doi.org/10.17275/per.23.80.10.5
- Tuma, F., & Nassar, A. K. (2021). Applying Bloom’s taxonomy in clinical surgery: Practical examples. Annals of Medicine and Surgery, 69(2021), 102656. https://doi.org/10.1016/j.amsu.2021.102656
- Vlachopoulos, D., & Makri, A. (2019). Online communication and interaction in distance higher education: A framework study of good practice. International Review of Education, 65(4), 605-632. https://doi.org/10.1007/s11159-019-09792-3
- Wegmann, S. J., & McCauley, J. K. (2014). Investigating asynchronous online communication: A connected stance revealed. Journal of Asynchronous Learning Networks, 18(1), 1-17.
- Wilson, L. O. (2016). Anderson and Krathwohl–Bloom’s taxonomy revised: Understanding the new version of Bloom's taxonomy. https://quincycollege.edu/wp-content/uploads/Anderson-and-Krathwohl_Revised-Blooms-Taxonomy.pdf
- Yang, Y., Zhao, B., & Chen, J. (2022). Remote areas college students’ online learning engagement investigation and improvement strategies. Fourth International Conference on Computer Science and Educational Informatization (CSEI 2022), Taiyuan, China.
- Yıldırım, A. & Şimşek, H. (2021). Sosyal bilimlerde nitel araştırma yöntemleri [Qualitative research methods in the social sciences]. (12th ed.) Seçkin.
- Zoller, U., & Tsaparlis, G. (1997). Higher and lower-order cognitive skills: The case of chemistry. Research in Science Education, 27(1), 117-130. https://doi.org/10.1007/BF02463036