Review
BibTex RIS Cite

The impact of climate change on hazelnut cultivation

Year 2024, Volume: 6 Issue: 2, 106 - 115
https://doi.org/10.53663/turjfas.1497178

Abstract

Hazelnut (Corylus avellana L.) cultivation faces substantial challenges in the wake of climate change. This review synthesizes findings from various studies to examine the impacts of climate change on hazelnut cultivation, strategies for mitigating these impacts, and the potential role of hazelnut orchards as carbon sinks. I discuss the physiological responses of hazelnut trees to changing climatic conditions, explore management strategies to enhance resilience and productivity, and evaluate the carbon sequestration potential of hazelnut orchards. Additionally, I assess the role of fertilization, irrigation, and other agricultural practices in shaping hazelnut growth and yield under shifting climate scenarios. By integrating sustainable agricultural practices and leveraging precision agriculture technologies, hazelnut growers can improve environmental sustainability and economic viability. This review provides comprehensive insights and practical recommendations for sustaining hazelnut production in the face of climate change

Ethical Statement

Not applicable

Supporting Institution

This research received no financial support

Thanks

Not applicable

References

  • Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., & Marchesano, K. (2019). Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators, 105, 525–543. http://dx.doi.org/10.1016/j.ecolind.2018.04.064
  • An, N., Turp, M. T., Türkeş, M., & Kurnaz, M. L. (2020). Mid-term impact of climate change on hazelnut yield. Agriculture, 10(5), 159. http://dx.doi.org/10.3390/agriculture10050159
  • Anonymous (2021). Ordu'da fındığı zirai don vurdu: Yüzde 90'a varan kayıp var. URL: https://www.yenisafak.com/gundem/orduda-findigi-zirai-don-vurdu-yuzde-90a-varan-kayip-var-3617094 (accessed date: April 6, 2021).
  • Anonymous, 2022. Zaqatalada sel: "Həyətimiz, fındıq bağlarımız, evlərin altının bir hissəsi suyun altında qalıb". URL: https://www.bbc.com/azeri/articles/ceq8z4qy336o (accessed date: July 4, 2022).
  • Anonymous, (2023). Düzce'deki sel felaketi fındık bahçelerine de zarar verdi. URL: https://www.aa.com.tr/tr/gundem/duzcedeki-sel-felaketi-findik-bahcelerine-de-zarar-verdi/2945584 (accessed date: July 14, 2023).
  • Anonymous, (2024). Hazelnut Research Institute Official Web Page. https://arastirma.tarimorman.gov.tr/findik/Menu/35/Findik.
  • Araus, J. L., & Kefauver, S. C. (2018). Breeding to adapt agriculture to climate change: Affordable phenotyping solutions. Current Opinion in Plant Biology, 45, 237–247. http://dx.doi.org/10.1016/j.pbi.2018.05.003
  • Arnell, N. W., & Gosling, S. N. (2016). The impacts of climate change on river flood risk at the global scale. Climatic Change, 134, 387–401. http://dx.doi.org/10.1007/s10584-014-1084-5
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5: 143–147. http://dx.doi.org/10.1038/nclimate2470
  • Balık, H.İ. & Kayalak Balık, S. (2015). Fındıkta 2014 yılında meydana gelen don zararı üzerine bir araştırma. GAP VII. Tarım Kongresi, 28 Nisan-1 Mayıs 2015, Şanlıurfa.
  • Balık, H. İ., & Arif, T. M. (2023). Findikta tozlanma ve döllenme konusunda son gelişmeler. Journal of Agricultural Biotechnology, 5: 84-98.
  • Beyhan, N., Demir, T., & Turan, A. (2007). İlkbahar dönemi iklim koşullarının fındığın verim ve gelişmesi üzerine etkileri. Türkiye V. Ulusal Bahçe Bitkileri Kongresi (pp. 459-463).
  • Botzen, W. J. W., Bouwer, L. M., & van den Bergh, J. C. J. M. (2010). Climate change and hailstorm damage: Empirical evidence and implications for agriculture and insurance. Resource and Energy Economics, 32(3), 341–362. http://dx.doi.org/10.1016/j.reseneeco.2009.10.004
  • Cabo, S. C. S. do. (2020). Innovative strategies to mitigate effects of climate change for sustainable hazelnut production. PhD thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, pp. 21.
  • Cabo, S., Morais, M. C., Aires, A., Carvalho, R., Pascual-Seva, N., Silva, A. P., & Gonçalves, B. (2020). Kaolin and seaweed-based extracts can be used as middle and long-term strategy to mitigate negative effects of climate change in physiological performance of hazelnut tree. Journal of Agronomy and Crop Science, 206(1), 28-42. http://dx.doi.org/10.1111/jac.12369
  • Chaves, M. M., & Pereira, J. S. (1992). Water stress, CO2 and climate change. Journal of Experimental Botany, 43(8), 1131–1139.
  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloaway, J., Heimann, M., et al. (2013). Carbon and other biogeochemical cycles. In M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465–570). Cambridge University Press. URL: https://www.ipcc.ch/report/ar5/wg1/
  • Črepinšek, Z., Štampar, F., Kajfež-Bogataj, L., & Solar, A. (2012). The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. International Journal of Biometeorology, 56, 681–694. http://dx.doi.org/10.1007/s00484-011-0469-7
  • Fındık Araştırma Enstitüsü Web Sayfası, (2024). https://arastirma.tarimorman.gov.tr/findik
  • Fireman, N. (2019). Oberlin's Experimental Hazelnut Orchard: Exploring Woody Agriculture's Potential for Climate Change Mitigation and Food System Resilience. Bachelor thesis, Oberlin College and Conservatory, Environmental Studies, Oberlin, pp. 122.
  • Granata, M. U., Bracco, F., & Catoni, R. (2020). Carbon dioxide sequestration capability of hazelnut orchards: daily and seasonal trends. Energy, Ecology and Environment, 5, 153–160. http://dx.doi.org/10.1007/s40974-020-00161-7
  • Granata, M. U., Catoni, R., & Bracco, F. (2021). The role of two different training systems in affecting carbon sequestration capability in hazelnut orchards. Energy, Ecology and Environment, 6, 285–291. http://dx.doi.org/10.1007/s40974-020-00202-1
  • Hidalgo-Galvez, M. D., García-Mozo, H., Oteros, J., Mestre, A., Botey, R., & Galán, C. (2018). Phenological behaviour of early spring flowering trees in Spain in response to recent climate changes. Theoretical and Applied Climatology, 132(1-2), 1-11, 263-273. http://dx.doi.org/10.1007/s00704-017-2089-6
  • Kasprzyk, I., Uruska, A., Szczepanek, K., Latałowa, M., Gaweł, J., Harmata, K., Myszkowska, D., Stach, A., & Stępalska, D. (2004). Regional differentiation in the dynamics of the pollen seasons of Alnus, Corylus and Fraxinus in Poland (preliminary results). Aerobiologia, 20, 141–151. http://dx.doi.org/10.1023/B:AERO.0000032951.25974.c9
  • Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60(10), 2859–2876. http://dx.doi.org/10.1093/jxb/erp096
  • Milošević, T., Milošević, N. (2012). Cluster drop phenomenon in hazelnut (Corylus avellana L.). Impact on productivity, nut traits and leaf nutrients content. Scientia Horticulturae, 148, 131-137. http://dx.doi.org/10.1016/j.scienta.2012.10.003
  • Mühlbachová, G., Růžek, P., Kusá, H., & Vavera, R. (2023). CO2 emissions from soils under different tillage practices and weather conditions. Agronomy, 13(12), 3084. http://dx.doi.org/10.3390/agronomy13123084
  • Nazir, M. J., Li, G., Nazir, M. M., Zulfiqar, F., Siddique, K. H. M., Iqbal, B., & Du, D. (2024). Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil and Tillage Research, 237, 105959. http://dx.doi.org/10.1016/j.still.2023.105959
  • Pacchiarelli, A., Priori, S., Chiti, T., Silvestri, C., & Cristofori, V. (2022). Carbon sequestration of hazelnut orchards in central Italy. Agriculture, Ecosystems & Environment, 333, 107955. http://dx.doi.org/10.1016/j.agee.2022.107955
  • Škvareninová, J. (2016). Impact of climatic conditions on the reproductive phenological phases of European hazel (Corylus avellana L.) in Slovakia. Journal of Forest Science, 62, 47–52. http://dx.doi.org/10.17221/55/2015-JFS
  • USDA Climate Hubs. (n.d.). Climate-resilient hazelnuts in Oregon and Washington. URL: https://www.climatehubs.usda.gov/hubs/northwest/topic/climate-resilient-hazelnuts-oregon-and-washington#
  • Tonkaz, T., Şahin, S., Bostan, S.Z., Korkmaz, K. 2019. Effect of supplementary irrigation on total antioxidant capacity and phenolic content of hazelnut. Akademik Ziraat Dergisi, 8(special issue), 79-84. https://doi.org/10.29278/azd.660295
  • Ustaoğlu, B. 2009. Türkiye’de iklim değişikliğinin fındık tarımına olası etkileri. Doktora tezi, İstanbul Teknik Üniversitesi, Avrasya Yer Bilimleri Enstitüsü, İstanbul, pp. 183.
  • Xiong, W., Reynolds, M., & Xu, Y. (2022). Climate change challenges plant breeding. Current Opinion in Plant Biology, 70, 102308. http://dx.doi.org/10.1016/j.pbi.2022.102308
  • Zhu, P., Zhuang, Q., Ciais, P., Welp, L., Li, W., & Xin, Q. (2017). Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback. Geophysical Research Letters, 44, 1956–1963. http://dx.doi.org/10.1002/2016GL071733
Year 2024, Volume: 6 Issue: 2, 106 - 115
https://doi.org/10.53663/turjfas.1497178

Abstract

References

  • Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., & Marchesano, K. (2019). Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators, 105, 525–543. http://dx.doi.org/10.1016/j.ecolind.2018.04.064
  • An, N., Turp, M. T., Türkeş, M., & Kurnaz, M. L. (2020). Mid-term impact of climate change on hazelnut yield. Agriculture, 10(5), 159. http://dx.doi.org/10.3390/agriculture10050159
  • Anonymous (2021). Ordu'da fındığı zirai don vurdu: Yüzde 90'a varan kayıp var. URL: https://www.yenisafak.com/gundem/orduda-findigi-zirai-don-vurdu-yuzde-90a-varan-kayip-var-3617094 (accessed date: April 6, 2021).
  • Anonymous, 2022. Zaqatalada sel: "Həyətimiz, fındıq bağlarımız, evlərin altının bir hissəsi suyun altında qalıb". URL: https://www.bbc.com/azeri/articles/ceq8z4qy336o (accessed date: July 4, 2022).
  • Anonymous, (2023). Düzce'deki sel felaketi fındık bahçelerine de zarar verdi. URL: https://www.aa.com.tr/tr/gundem/duzcedeki-sel-felaketi-findik-bahcelerine-de-zarar-verdi/2945584 (accessed date: July 14, 2023).
  • Anonymous, (2024). Hazelnut Research Institute Official Web Page. https://arastirma.tarimorman.gov.tr/findik/Menu/35/Findik.
  • Araus, J. L., & Kefauver, S. C. (2018). Breeding to adapt agriculture to climate change: Affordable phenotyping solutions. Current Opinion in Plant Biology, 45, 237–247. http://dx.doi.org/10.1016/j.pbi.2018.05.003
  • Arnell, N. W., & Gosling, S. N. (2016). The impacts of climate change on river flood risk at the global scale. Climatic Change, 134, 387–401. http://dx.doi.org/10.1007/s10584-014-1084-5
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5: 143–147. http://dx.doi.org/10.1038/nclimate2470
  • Balık, H.İ. & Kayalak Balık, S. (2015). Fındıkta 2014 yılında meydana gelen don zararı üzerine bir araştırma. GAP VII. Tarım Kongresi, 28 Nisan-1 Mayıs 2015, Şanlıurfa.
  • Balık, H. İ., & Arif, T. M. (2023). Findikta tozlanma ve döllenme konusunda son gelişmeler. Journal of Agricultural Biotechnology, 5: 84-98.
  • Beyhan, N., Demir, T., & Turan, A. (2007). İlkbahar dönemi iklim koşullarının fındığın verim ve gelişmesi üzerine etkileri. Türkiye V. Ulusal Bahçe Bitkileri Kongresi (pp. 459-463).
  • Botzen, W. J. W., Bouwer, L. M., & van den Bergh, J. C. J. M. (2010). Climate change and hailstorm damage: Empirical evidence and implications for agriculture and insurance. Resource and Energy Economics, 32(3), 341–362. http://dx.doi.org/10.1016/j.reseneeco.2009.10.004
  • Cabo, S. C. S. do. (2020). Innovative strategies to mitigate effects of climate change for sustainable hazelnut production. PhD thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, pp. 21.
  • Cabo, S., Morais, M. C., Aires, A., Carvalho, R., Pascual-Seva, N., Silva, A. P., & Gonçalves, B. (2020). Kaolin and seaweed-based extracts can be used as middle and long-term strategy to mitigate negative effects of climate change in physiological performance of hazelnut tree. Journal of Agronomy and Crop Science, 206(1), 28-42. http://dx.doi.org/10.1111/jac.12369
  • Chaves, M. M., & Pereira, J. S. (1992). Water stress, CO2 and climate change. Journal of Experimental Botany, 43(8), 1131–1139.
  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloaway, J., Heimann, M., et al. (2013). Carbon and other biogeochemical cycles. In M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465–570). Cambridge University Press. URL: https://www.ipcc.ch/report/ar5/wg1/
  • Črepinšek, Z., Štampar, F., Kajfež-Bogataj, L., & Solar, A. (2012). The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. International Journal of Biometeorology, 56, 681–694. http://dx.doi.org/10.1007/s00484-011-0469-7
  • Fındık Araştırma Enstitüsü Web Sayfası, (2024). https://arastirma.tarimorman.gov.tr/findik
  • Fireman, N. (2019). Oberlin's Experimental Hazelnut Orchard: Exploring Woody Agriculture's Potential for Climate Change Mitigation and Food System Resilience. Bachelor thesis, Oberlin College and Conservatory, Environmental Studies, Oberlin, pp. 122.
  • Granata, M. U., Bracco, F., & Catoni, R. (2020). Carbon dioxide sequestration capability of hazelnut orchards: daily and seasonal trends. Energy, Ecology and Environment, 5, 153–160. http://dx.doi.org/10.1007/s40974-020-00161-7
  • Granata, M. U., Catoni, R., & Bracco, F. (2021). The role of two different training systems in affecting carbon sequestration capability in hazelnut orchards. Energy, Ecology and Environment, 6, 285–291. http://dx.doi.org/10.1007/s40974-020-00202-1
  • Hidalgo-Galvez, M. D., García-Mozo, H., Oteros, J., Mestre, A., Botey, R., & Galán, C. (2018). Phenological behaviour of early spring flowering trees in Spain in response to recent climate changes. Theoretical and Applied Climatology, 132(1-2), 1-11, 263-273. http://dx.doi.org/10.1007/s00704-017-2089-6
  • Kasprzyk, I., Uruska, A., Szczepanek, K., Latałowa, M., Gaweł, J., Harmata, K., Myszkowska, D., Stach, A., & Stępalska, D. (2004). Regional differentiation in the dynamics of the pollen seasons of Alnus, Corylus and Fraxinus in Poland (preliminary results). Aerobiologia, 20, 141–151. http://dx.doi.org/10.1023/B:AERO.0000032951.25974.c9
  • Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60(10), 2859–2876. http://dx.doi.org/10.1093/jxb/erp096
  • Milošević, T., Milošević, N. (2012). Cluster drop phenomenon in hazelnut (Corylus avellana L.). Impact on productivity, nut traits and leaf nutrients content. Scientia Horticulturae, 148, 131-137. http://dx.doi.org/10.1016/j.scienta.2012.10.003
  • Mühlbachová, G., Růžek, P., Kusá, H., & Vavera, R. (2023). CO2 emissions from soils under different tillage practices and weather conditions. Agronomy, 13(12), 3084. http://dx.doi.org/10.3390/agronomy13123084
  • Nazir, M. J., Li, G., Nazir, M. M., Zulfiqar, F., Siddique, K. H. M., Iqbal, B., & Du, D. (2024). Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil and Tillage Research, 237, 105959. http://dx.doi.org/10.1016/j.still.2023.105959
  • Pacchiarelli, A., Priori, S., Chiti, T., Silvestri, C., & Cristofori, V. (2022). Carbon sequestration of hazelnut orchards in central Italy. Agriculture, Ecosystems & Environment, 333, 107955. http://dx.doi.org/10.1016/j.agee.2022.107955
  • Škvareninová, J. (2016). Impact of climatic conditions on the reproductive phenological phases of European hazel (Corylus avellana L.) in Slovakia. Journal of Forest Science, 62, 47–52. http://dx.doi.org/10.17221/55/2015-JFS
  • USDA Climate Hubs. (n.d.). Climate-resilient hazelnuts in Oregon and Washington. URL: https://www.climatehubs.usda.gov/hubs/northwest/topic/climate-resilient-hazelnuts-oregon-and-washington#
  • Tonkaz, T., Şahin, S., Bostan, S.Z., Korkmaz, K. 2019. Effect of supplementary irrigation on total antioxidant capacity and phenolic content of hazelnut. Akademik Ziraat Dergisi, 8(special issue), 79-84. https://doi.org/10.29278/azd.660295
  • Ustaoğlu, B. 2009. Türkiye’de iklim değişikliğinin fındık tarımına olası etkileri. Doktora tezi, İstanbul Teknik Üniversitesi, Avrasya Yer Bilimleri Enstitüsü, İstanbul, pp. 183.
  • Xiong, W., Reynolds, M., & Xu, Y. (2022). Climate change challenges plant breeding. Current Opinion in Plant Biology, 70, 102308. http://dx.doi.org/10.1016/j.pbi.2022.102308
  • Zhu, P., Zhuang, Q., Ciais, P., Welp, L., Li, W., & Xin, Q. (2017). Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback. Geophysical Research Letters, 44, 1956–1963. http://dx.doi.org/10.1002/2016GL071733
There are 35 citations in total.

Details

Primary Language English
Subjects Pomology and Treatment, Horticultural Production (Other), Fruit-Vegetables Technology, Soil Chemistry and Soil Carbon Sequestration (Excl. Carbon Sequestration Science)
Journal Section Review
Authors

Ayhan Ahmadov 0009-0007-6890-2413

Publication Date
Submission Date June 6, 2024
Acceptance Date June 26, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Ahmadov, A. (n.d.). The impact of climate change on hazelnut cultivation. Turkish Journal of Food and Agriculture Sciences, 6(2), 106-115. https://doi.org/10.53663/turjfas.1497178

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci